Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels

被引:92
作者
Li, Tianlong [1 ]
Yu, Shimin [1 ,2 ]
Sun, Bei [3 ,4 ]
Li, Yilong [3 ,4 ]
Wang, Xinlong [3 ,4 ]
Pan, Yunlu [1 ]
Song, Chunlei [1 ]
Ren, Yukun [1 ]
Zhang, Zhanxiang [1 ]
Grattan, Kenneth T. V. [1 ,5 ]
Wu, Zhiguang [1 ,6 ,7 ]
Zhao, Jie [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Ocean Univ China, Coll Engn, Qingdao 266100, Peoples R China
[3] Harbin Med Univ, Dept Pancreat & Biliary Surg, Affiliated Hosp 1, Harbin, Peoples R China
[4] Harbin Med Univ, Key Lab Hepatosplen Surg, Minist Educ, Affiliated Hosp 1, Harbin 150001, Peoples R China
[5] Univ London, Sch Sci & Technol, London EC1V 0HB, England
[6] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Peoples R China
[7] Harbin Inst Technol, Sch Med & Hlth, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOTHERAPEUTICS; DELIVERY; FLOW;
D O I
10.1126/sciadv.adg4501
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Swimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allow-ing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC mem-brane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective mag-netic propulsion, even against a flow of similar to 2.1 cm/s, comparable with rabbit blood flow characteristics. The equiv-alent friction coefficient with magnetically actuated retention is elevated similar to 24-fold, compared to magnetic microspheres, achieving active retention at 3.2 cm/s, for >36 hours, showing considerable promise across bio-medical applications.
引用
收藏
页数:17
相关论文
共 54 条
[1]   Neutrophil-inspired propulsion in a combined acoustic and magnetic field [J].
Ahmed, Daniel ;
Baasch, Thierry ;
Blondel, Nicolas ;
Laubli, Nino ;
Dual, Jurg ;
Nelson, Bradley J. .
NATURE COMMUNICATIONS, 2017, 8
[2]   Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow [J].
Alapan, Yunus ;
Bozuyuk, Ugur ;
Erkoc, Pelin ;
Karacakol, Alp Can ;
Sitti, Metin .
SCIENCE ROBOTICS, 2020, 5 (42)
[3]   A cellular platform for the development of synthetic living machines [J].
Blackiston, Douglas ;
Lederer, Emma ;
Kriegman, Sam ;
Garnier, Simon ;
Bongard, Joshua ;
Levin, Michael .
SCIENCE ROBOTICS, 2021, 6 (52)
[4]   Clearance of pathological antibodies using biomimetic nanoparticles [J].
Copp, Jonathan A. ;
Fang, Ronnie H. ;
Luk, Brian T. ;
Hu, Che-Ming J. ;
Gao, Weiwei ;
Zhang, Kang ;
Zhang, Liangfang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (37) :13481-13486
[5]   Nanomagnetic encoding of shape-morphing micromachines [J].
Cui, Jizhai ;
Huang, Tian-Yun ;
Luo, Zhaochu ;
Testa, Paolo ;
Gu, Hongri ;
Chen, Xiang-Zhong ;
Nelson, Bradley J. ;
Heyderman, Laura J. .
NATURE, 2019, 575 (7781) :164-+
[6]  
Dai BH, 2016, NAT NANOTECHNOL, V11, P1087, DOI [10.1038/nnano.2016.187, 10.1038/NNANO.2016.187]
[7]   Magnetic helical micro-/nanomachines: Recent progress and perspective [J].
Dong, Yue ;
Wang, Lu ;
Iacovacci, Veronica ;
Wang, Xiaopu ;
Zhang, Li ;
Nelson, Bradley J. .
MATTER, 2022, 5 (01) :77-109
[8]   A decade retrospective of medical robotics research from 2010 to 2020 [J].
Dupont, Pierre E. ;
Nelson, Bradley J. ;
Goldfarb, Michael ;
Hannaford, Blake ;
Menciassi, Arianna ;
O'Malley, Marcia K. ;
Simaan, Nabil ;
Valdastri, Pietro ;
Yang, Guang-Zhong .
SCIENCE ROBOTICS, 2021, 6 (60)
[9]  
Felfoul O, 2016, NAT NANOTECHNOL, V11, P941, DOI [10.1038/NNANO.2016.137, 10.1038/nnano.2016.137]
[10]   Tiny robots make big advances [J].
Fischer, Peer ;
Nelson, Bradley J. .
SCIENCE ROBOTICS, 2021, 6 (52)