On the log abundance for compact Kahler threefolds

被引:5
作者
Das, Omprokash [1 ]
Ou, Wenhao [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
基金
国家重点研发计划;
关键词
THEOREM; SPACES; CONE;
D O I
10.1007/s00229-023-01467-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show that if (X, Delta) is a log canonical compact Kahler threefold such that K-X + Delta is nef and the numerical dimension nu(K-X + Delta) not equal 2, then K-X + Delta is semi-ample.
引用
收藏
页码:341 / 404
页数:64
相关论文
共 47 条
[1]   The moduli b-divisor of an lc-trivial fibration [J].
Ambro, F .
COMPOSITIO MATHEMATICA, 2005, 141 (02) :385-403
[2]  
Barth W., 2004, Compact Complex Surfaces, VSecond
[3]   Divisorial Zariski decompositions on compact complex manifolds [J].
Boucksom, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (01) :45-76
[4]  
Boucksom S, 2013, J ALGEBRAIC GEOM, V22, P201
[5]  
Campana F., 2021, ADDENDUM PAPER ABUND
[6]  
Campana F, 2016, ANN SCI ECOLE NORM S, V49, P971
[7]  
Cao J., 2020, J DIFFER GEOM, V114, P1
[8]  
Das O, 2019, MATH Z, V292, P937, DOI 10.1007/s00209-018-2110-5
[9]  
Debarre Olivier, 2001, UNIVERSITEX
[10]   Numerical characterization of the Kahler cone of a compact Kahler manifold [J].
Demailly, JP ;
Paun, M .
ANNALS OF MATHEMATICS, 2004, 159 (03) :1247-1274