Screening Polarimetric SAR Data via Geometric Barycenters for Covariance Symmetry Classification

被引:5
作者
Pallotta, Luca [1 ]
Tesauro, Manlio [1 ]
机构
[1] Univ Basilicata, Sch Engn, Potenza 85100, Italy
关键词
Covariance matrices; Synthetic aperture radar; Scattering; Radar polarimetry; Matrix decomposition; L-band; Geoscience and remote sensing; Covariance and coherence scattering matrix; geometric barycenter; information geometry; outlier cancellation; polarimetric synthetic aperture radar (SAR); unsupervised classification; UNSUPERVISED CLASSIFICATION; DECOMPOSITION;
D O I
10.1109/LGRS.2023.3250741
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter proposes a robust framework for polarimetric covariance symmetries classification in synthetic aperture radar (SAR) images applying a prescreening on the data looks before they are used to perform inferences. More specifically, the devised method improves the performance of a previous work based on the exploitation of the special structures assumed by the covariance/coherence matrix when symmetric scattering mechanisms dominate the polarimetric returns. To do this, the algorithm selects first the most homogeneous data through the cancellation of those sharing the highest generalized inner product (GIP) values computed with the use of the geometric barycenters. Then, the procedure based on model order selection (MOS) developed in the homogeneous case is applied on the filtered data. The conducted tests show the potentiality of the proposed method in correctly classifying the observed scene of L-band real-recorded SAR data with respect to its standard counterpart.
引用
收藏
页数:5
相关论文
共 23 条
  • [1] Optimality Claims for the FML Covariance Estimator with respect to Two Matrix Norms
    Aubry, A.
    De Maio, A.
    Carotenuto, V.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (03) : 2055 - 2057
  • [2] Assessing Reciprocity in Polarimetric SAR Data
    Aubry, Augusto
    Carotenuto, Vincenzo
    De Maio, Antonio
    Pallotta, Luca
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (01) : 87 - 91
  • [3] Covariance matrix estimation via geometric barycenters and its application to radar training data selection
    Aubry, Augusto
    De Maio, Antonio
    Pallotta, Luca
    Farina, Alfonso
    [J]. IET RADAR SONAR AND NAVIGATION, 2013, 7 (06) : 600 - 614
  • [4] Screening among multivariate normal data
    Chen, PY
    Melvin, WL
    Wicks, MC
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 69 (01) : 10 - 29
  • [5] A review of target decomposition theorems in radar polarimetry
    Cloude, SR
    Pottier, E
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (02): : 498 - 518
  • [6] Design and analysis of a knowledge-aided radar detector for Doppler processing
    Conte, E.
    De Maio, A.
    Farina, A.
    Foglia, G.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (03) : 1058 - 1079
  • [7] NON-EUCLIDEAN STATISTICS FOR COVARIANCE MATRICES, WITH APPLICATIONS TO DIFFUSION TENSOR IMAGING
    Dryden, Ian L.
    Koloydenko, Alexey
    Zhou, Diwei
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (03) : 1102 - 1123
  • [8] Model-Based Polarimetric Decomposition With Higher Order Statistics
    Eltoft, Torbjorn
    Doulgeris, Anthony P.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 992 - 996
  • [9] ESA, 2019, POLSARPRO POL SAR DA
  • [10] Ferro-Famil L., 2001, PROGR ELECTROMAGNETI, V24, P251