Oscillation and jump inequalities for the polynomial ergodic averages along multi-dimensional subsets of primes

被引:1
作者
Mehlhop, Nathan [1 ]
Slomian, Wojciech [2 ,3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
[3] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
基金
美国国家科学基金会;
关键词
37A30 (Primary); 37A46; 42B20; THEOREM; PROOF;
D O I
10.1007/s00208-023-02597-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the uniform oscillation and jump inequalities for the polynomial ergodic averages modeled over multi-dimensional subsets of primes. This is a contribution to the Rosenblatt-Wierdl conjecture (Lond Math Soc Lect Notes 205:3-151, 1995, Problem 4.12, p. 80) with averages taken over primes. These inequalities provide endpoints for the r-variational estimates obtained by Trojan (Math Ann 374:1597-1656, 2019).
引用
收藏
页码:2807 / 2842
页数:36
相关论文
共 41 条
[1]  
Assani I., 2003, Wiener Wintner Ergodic Theorems
[2]  
Bellow A., 1981, LECT NOTES MATH, V945, P429
[3]   Proof of the ergodic theorem [J].
Birkhoff, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 :656-660
[4]   ON THE MAXIMAL ERGODIC THEOREM FOR CERTAIN SUBSETS OF THE INTEGERS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :39-72
[5]  
BOURGAIN J, 1989, PUBL MATH-PARIS, P5
[6]   ON THE POINTWISE ERGODIC THEOREM ON LP FOR ARITHMETIC SETS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :73-84
[8]  
Campbell JT, 2000, DUKE MATH J, V105, P59
[9]  
Cotlar M., 1955, Rev. Mat. Cuyana, V1, P105
[10]   (Uniform) convergence of twisted ergodic averages [J].
Eisner, Tanja ;
Krause, Ben .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 :2172-2202