Revealing and Regulating the Complex Reaction Mechanism of CO2 Hydrogenation to Higher Alcohols on Multifunctional Tandem Catalysts

被引:26
作者
Zhang, Shunan [1 ]
Huang, Chaojie [2 ]
Shao, Zilong [2 ]
Zhou, Haozhi [1 ]
Chen, Junjun [2 ]
Li, Lin [2 ]
Lu, Junwen [2 ]
Liu, Xiaofang [2 ]
Luo, Hu [2 ]
Xia, Lin [2 ]
Wang, Hui [1 ,2 ]
Sun, Yuhan [1 ,2 ,3 ]
机构
[1] Shanghai Tech Univ, Inst Carbon Neutral, Shanghai 201203, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, CAS Key Lab Low Carbon Convers Sci & Engn, Shanghai 201210, Peoples R China
[3] Shanghai Inst Clean Technol, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; higher alcohols; reaction mechanism; chemical transient kinetics; tandem catalysts; FISCHER-TROPSCH REACTION; ETHANOL;
D O I
10.1021/acscatal.2c06245
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Revealing and regulating the intricate reaction mechanism of direct CO2 hydrogenation to higher alcohols (C2+OH), especially for the crucial C-C coupling step, is still a great challenge. Herein, the specific reaction network on Co2C and CuZnAl multifunctional tandem catalysts is elucidated by designing subtly surface adsorption-desorption reactions, in situ chemical transient kinetics, and theory calculations. The key C-C coupling step for the formation of C2+OH over the sole Co2C catalyst was the insertion of CO into R-CHx, while the reaction mechanism can be modulated to the coupling of R-CH2 and CHO with a lower energy barrier on the tandem catalyst (Co2C||CuZnAl). R-CH2 was derived from the hydrogenation dissociation of olefins and coupled with the CHO from formate hydrogenation at the Cu/ZnAl2O4 interface. Such multifunctional tandem catalysts exhibited a high space-time yield of C2+OH of 2.2 mmol g-1 h-1. This work provides an effective strategy for studying complex mechanisms, contributing to the precise design of highly efficient catalysts and the optimization of reaction pathways.
引用
收藏
页码:3055 / 3065
页数:11
相关论文
共 30 条
[1]  
Ali Syed Saim, 2022, Journal of Environmental Chemical Engineering, DOI 10.1016/j.jece.2021.106962
[2]  
Bando KK, 1998, APPL CATAL A-GEN, V175, P67
[3]   CO2 Hydrogenation to Ethanol over Cu@Na-Beta [J].
Ding, Liping ;
Shi, Taotao ;
Gu, Jing ;
Cui, Yun ;
Zhang, Zhiyang ;
Yang, Changju ;
Chen, Teng ;
Lin, Ming ;
Wang, Peng ;
Xue, Nianhua ;
Peng, Luming ;
Guo, Xuefeng ;
Zhu, Yan ;
Chen, Zhaoxu ;
Ding, Weiping .
CHEM, 2020, 6 (10) :2673-2689
[4]   Effects of Support and Rh Additive on Co-Based Catalysts in the Ethanol Steam Reforming Reaction [J].
Ferencz, Zs. ;
Erdohelyi, A. ;
Baan, K. ;
Oszko, A. ;
Ovari, L. ;
Konya, Z. ;
Papp, C. ;
Steinrueck, H. -P. ;
Kiss, J. .
ACS CATALYSIS, 2014, 4 (04) :1205-1218
[5]   Ethanol for a sustainable energy future [J].
Goldemberg, Jose .
SCIENCE, 2007, 315 (5813) :808-810
[6]   Highly effective synthesis of ethanol by CO2-hydrogenation on well balanced multi-functional FT-type composite catalysts [J].
Inui, T ;
Yamamoto, T ;
Inoue, M ;
Hara, H ;
Takeguchi, T ;
Kim, JB .
APPLIED CATALYSIS A-GENERAL, 1999, 186 (1-2) :395-406
[7]   Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts [J].
Inui, T ;
Yamamoto, T .
CATALYSIS TODAY, 1998, 45 (1-4) :209-214
[8]   CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts [J].
Kusama, H ;
Okabe, K ;
Sayama, K ;
Arakawa, H .
CATALYSIS TODAY, 1996, 28 (03) :261-266
[9]   Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts [J].
Kusama, H ;
Okabe, K ;
Sayama, K ;
Arakawa, H .
ENERGY, 1997, 22 (2-3) :343-348
[10]   Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol [J].
Li, Didi ;
Xu, Fang ;
Tang, Xuan ;
Dai, Sheng ;
Pu, Tiancheng ;
Liu, Xianglin ;
Tian, Pengfei ;
Xuan, Fuzhen ;
Xu, Zhi ;
Wachs, Israel E. ;
Zhu, Minghui .
NATURE CATALYSIS, 2022, 5 (02) :99-108