Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection

被引:4
作者
Scavuzzo, Anna [1 ]
Pasini, Giovanni [2 ,3 ]
Crescio, Elisabetta [4 ]
Jimenez-Rios, Miguel Angel [1 ]
Figueroa-Rodriguez, Pavel [5 ]
Comelli, Albert [6 ]
Russo, Giorgio [2 ]
Vazquez, Ivan Calvo [1 ]
Araiza, Sebastian Muruato [1 ]
Ortiz, David Gomez [1 ]
Montiel, Delia Perez [7 ]
Saavedra, Alejandro Lopez [8 ]
Stefano, Alessandro [2 ]
机构
[1] Univ Autonoma Mexico UNAM, Dept Urooncol, Inst Nacl Cancerol, Mexico City 14080, DF, Mexico
[2] CNR, Inst Mol Bioimaging & Physiol, Natl Res Council, IBFM, I-90015 Cefalu, Italy
[3] Sapienza Univ Rome, Dept Mech & Aerosp Engn, Eudossiana 18, I-00184 Rome, Italy
[4] Tecnol Monterrey, Dept Sci, Mexico City 14080, DF, Mexico
[5] Univ Autonoma Mexico UNAM, Dept Biomed Engn, Inst Nacl Cancerol, Mexico City 14080, DF, Mexico
[6] Ri MED Fdn, Via Bandiera 11, I-90133 Palermo, Italy
[7] Inst Nacl Cancerol, Dept Pathol, Mexico City 14080, DF, Mexico
[8] Inst Nacl Cancerol, Adv Microscopy Applicat Unit ADMiRA, Mexico City 14080, DF, Mexico
关键词
radiomics; metastatic non-seminomatous testicular germ cell tumors; computed tomography; histopathology; SEGMENTATION; VALIDATION; HISTOLOGY; CANCER; MODEL;
D O I
10.3390/jimaging9100213
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Background: The identification of histopathology in metastatic non-seminomatous testicular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients, addressing an important survivorship concern. Aim: To explore this possibility, we conducted a study investigating the role of computed tomography (CT) radiomics models that integrate clinical predictors, enabling personalized prediction of histopathology in metastatic non-seminomatous TGCT patients prior to PC-RPLND. In this retrospective study, we included a cohort of 122 patients. Methods: Using dedicated radiomics software, we segmented the targets and extracted quantitative features from the CT images. Subsequently, we employed feature selection techniques and developed radiomics-based machine learning models to predict histological subtypes. To ensure the robustness of our procedure, we implemented a 5-fold cross-validation approach. When evaluating the models' performance, we measured metrics such as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F-score. Result: Our radiomics model based on the Support Vector Machine achieved an optimal average AUC of 0.945. Conclusions: The presented CT-based radiomics model can potentially serve as a non-invasive tool to predict histopathological outcomes, differentiating among fibrosis/necrosis, teratoma, and viable tumor in metastatic non-seminomatous TGCT before PC-RPLND. It has the potential to be considered a promising tool to mitigate the risk of over- or under-treatment in young patients, although multi-center validation is critical to confirm the clinical utility of the proposed radiomics workflow.
引用
收藏
页数:16
相关论文
共 35 条
[1]   Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection [J].
Baessler, Bettina ;
Nestler, Tim ;
dos Santos, Daniel ;
Paffenholz, Pia ;
Zeuch, Vikram ;
Pfister, David ;
Maintz, David ;
Heidenreich, Axel .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2334-2345
[2]   Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics [J].
Barone, Stefano ;
Cannella, Roberto ;
Comelli, Albert ;
Pellegrino, Arianna ;
Salvaggio, Giuseppe ;
Stefano, Alessandro ;
Vernuccio, Federica .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2021, 37 (05) :961-972
[3]   A New Preclinical Decision Support System Based on PET Radiomics: A Preliminary Study on the Evaluation of an Innovative 64Cu-Labeled Chelator in Mouse Models [J].
Benfante, Viviana ;
Stefano, Alessandro ;
Comelli, Albert ;
Giaccone, Paolo ;
Cammarata, Francesco Paolo ;
Richiusa, Selene ;
Scopelliti, Fabrizio ;
Pometti, Marco ;
Ficarra, Milene ;
Cosentino, Sebastiano ;
Lunardon, Marcello ;
Mastrotto, Francesca ;
Andrighetto, Alberto ;
Tuttolomondo, Antonino ;
Parenti, Rosalba ;
Ippolito, Massimo ;
Russo, Giorgio .
JOURNAL OF IMAGING, 2022, 8 (04)
[4]   AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics [J].
Castiglioni, Isabella ;
Gallivanone, Francesca ;
Soda, Paolo ;
Avanzo, Michele ;
Stancanello, Joseph ;
Aiello, Marco ;
Interlenghi, Matteo ;
Salvatore, Marco .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) :2673-2699
[5]   Radiomics: is it time to compose the puzzle? [J].
Castiglioni, Isabella ;
Gilardi, Maria Carla .
CLINICAL AND TRANSLATIONAL IMAGING, 2018, 6 (05) :411-413
[6]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[7]  
Comelli A., 2020, Tissue Classification to Support Local Active Delineation of Brain Tumors, VVolume 1065
[8]   Towards reproducible radiomics research: introduction of a database for radiomics studies [J].
D'Antonoli, Tugba Akinci ;
Cuocolo, Renato ;
Baessler, Bettina ;
dos Santos, Daniel Pinto .
EUROPEAN RADIOLOGY, 2024, 34 (01) :436-443
[9]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[10]  
2-4