Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes

被引:4
作者
Capetti, Caio Cesar de Mello [1 ]
Pellegrini, Vanessa de Oliveira Arnoldi [1 ]
Vacilotto, Milena Moreira [1 ]
Curvelo, Antonio Aprigio da Silva [2 ]
Falvo, Mauricio [1 ]
Guimaraes, Francisco Eduardo Gontijo [1 ]
Ontanon, Ornella M. [3 ,4 ]
Campos, Eleonora [3 ,4 ]
Polikarpov, Igor [1 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Inst Quim Sao Carlos, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[3] Inst Nacl Tecnol Agr INTA, Inst Biotecnol Reseros & N Repetto, CICVyA, Hurlingham B1686, Buenos Aires, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
基金
巴西圣保罗研究基金会;
关键词
Xylooligosaccharides; Sugarcane bagasse; Xylanases; Hydrothermal pretreatment; Alkali pretreatment; ENZYMATIC-HYDROLYSIS; ARABINOXYLAN; EXTRACTION; BIOMASS; XYLAN;
D O I
10.1007/s11947-023-03226-7
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 +/- 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 +/- 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.
引用
收藏
页码:1752 / 1764
页数:13
相关论文
共 60 条
[1]   Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films [J].
Alekhina, Marina ;
Mikkonen, Kirsi S. ;
Alen, Raimo ;
Tenkanen, Maija ;
Sixta, Herbert .
CARBOHYDRATE POLYMERS, 2014, 100 :89-96
[2]   Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides [J].
Asahara, T ;
Nomoto, K ;
Shimizu, K ;
Watanuki, M ;
Tanaka, R .
JOURNAL OF APPLIED MICROBIOLOGY, 2001, 91 (06) :985-996
[3]   The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse [J].
Azevedo Carvalho, Ana Flavia ;
Marcondes, Wilian Fioreli ;
Neto, Pedro de Oliva ;
Pastore, Glaucia Maria ;
Saddler, Jack N. ;
Arantes, Valdeir .
BIORESOURCE TECHNOLOGY, 2018, 250 :221-229
[4]   Enzyme synergy for the production of arabinoxylo-oligosaccharides from highly substituted arabinoxylan and evaluation of their prebiotic potential [J].
Bhattacharya, Abhishek ;
Ruthes, Andrea ;
Vilaplana, Francisco ;
Karlsson, Eva Nordberg ;
Adlecreutz, Patrick ;
Stalbrand, Henrik .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2020, 131
[5]   Towards enzymatic breakdown of complex plant xylan structures: State of the art [J].
Biely, Peter ;
Singh, Suren ;
Puchart, Vladimir .
BIOTECHNOLOGY ADVANCES, 2016, 34 (07) :1260-1274
[6]   Enhanced hydrolysis of hydrothermally and autohydrolytically treated sugarcane bagasse and understanding the structural changes leading to improved saccharification [J].
Brar, Kamalpreet Kaur ;
Santo, Melissa C. Espirito ;
Pellegrini, Vanessa O. A. ;
deAzevedo, Eduardo R. ;
Guimaraes, Francisco E. C. ;
Polikarpov, Igor ;
Chadha, Bhupinder Singh .
BIOMASS & BIOENERGY, 2020, 139
[7]   Integrated processing of sugarcane bagasse: Arabinoxylan extraction integrated with ethanol production [J].
Campbell, G. M. ;
Mustac, N. Cukelj ;
Alyassin, M. ;
Gomez, L. D. ;
Simister, R. ;
Flint, J. ;
Philips, D. J. ;
Gronnow, M. J. ;
Westwood, N. J. .
BIOCHEMICAL ENGINEERING JOURNAL, 2019, 146 :31-40
[8]  
Capetti C.C. de M., 2023, Mannanases and other mannan-degrading enzymes, DOI [10.1016/B978-0-323-91805-3.00013-7, DOI 10.1016/B978-0-323-91805-3.00013-7]
[9]   Recent advances in the enzymatic production and applications of xylooligosaccharides [J].
Capetti, Caio Cesar de Mello ;
Vacilotto, Milena Moreira ;
Dabul, Andrei Nicoli Gebieluca ;
Sepulchro, Ana Gabriela Veiga ;
Pellegrini, Vanessa Oliveira Arnoldi ;
Polikarpov, Igor .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (10)
[10]   Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy [J].
Coletta, Vitor Carlos ;
Rezende, Camila Alves ;
da Conceicao, Fernando Rodrigues ;
Polikarpov, Igor ;
Gontijo Guimaraes, Francisco Eduardo .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6