Quantum random number generation based on a perovskite light emitting diode

被引:12
作者
Argillander, Joakim [1 ]
Alarcon, Alvaro [1 ]
Bao, Chunxiong [2 ,3 ]
Kuang, Chaoyang [2 ]
Lima, Gustavo [4 ,5 ]
Gao, Feng [2 ]
Xavier, Guilherme B. [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden
[3] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Univ Concepcion, Dept Fis, 160-C, Concepcion, Chile
[5] Univ Concepcion, Millennium Inst Res Opt, 160-C, Concepcion, Chile
基金
瑞典研究理事会;
关键词
ARRIVAL; TIME;
D O I
10.1038/s42005-023-01280-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
True random number generation is not thought to be possible using a classical approach but by instead exploiting quantum mechanics genuine randomness can be achieved. Here, the authors demonstrate a certified quantum random number generation using a metal-halide perovskite light emitting diode as a source of weak coherent polarisation states randomly producing an output of either 0 or 1. The recent development of perovskite light emitting diodes (PeLEDs) has the potential to revolutionize the fields of optical communication and lighting devices, due to their simplicity of fabrication and outstanding optical properties. Here we demonstrate that PeLEDs can also be used in the field of quantum technologies by implementing a highly-secure quantum random number generator (QRNG). Modern QRNGs that certify their privacy are posed to replace classical random number generators in applications such as encryption and gambling, and therefore need to be cheap, fast and with integration capabilities. Using a compact metal-halide PeLED source, we generate random numbers, which are certified to be secure against an eavesdropper, following the quantum measurement-device-independent scenario. The obtained generation rate of more than 10 Mbit s(-1), which is already comparable to commercial devices, shows that PeLEDs can work as high-quality light sources for quantum information tasks, thus opening up future applications in quantum technologies.
引用
收藏
页数:7
相关论文
共 63 条
[1]   Certified randomness in quantum physics [J].
Acin, Antonio ;
Masanes, Lluis .
NATURE, 2016, 540 (7632) :213-219
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   Bidirectional optical signal transmission between two identical devices using perovskite diodes [J].
Bao, Chunxiong ;
Xu, Weidong ;
Yang, Jie ;
Bai, Sai ;
Teng, Pengpeng ;
Yang, Ying ;
Wang, Jianpu ;
Zhao, Ni ;
Zhang, Wenjing ;
Huang, Wei ;
Gao, Feng .
NATURE ELECTRONICS, 2020, 3 (03) :156-164
[4]  
Bell J.S., 1964, Phys. Phys. Fiz., V1, P195, DOI 10.1103/PhysicsPhysiqueFizika.1.195
[5]   White perovskite based lighting devices [J].
Bidikoudi, M. ;
Fresta, E. ;
Costa, R. D. .
CHEMICAL COMMUNICATIONS, 2018, 54 (59) :8150-8169
[6]   Experimentally generated randomness certified by the impossibility of superluminal signals [J].
Bierhorst, Peter ;
Knill, Emanuel ;
Glancy, Scott ;
Zhang, Yanbao ;
Mink, Alan ;
Jordan, Stephen ;
Rommal, Andrea ;
Liu, Yi-Kai ;
Christensen, Bradley ;
Nam, Sae Woo ;
Stevens, Martin J. ;
Shalm, Lynden K. .
NATURE, 2018, 556 (7700) :223-+
[7]   Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination [J].
Brask, Jonatan Bohr ;
Martin, Anthony ;
Esposito, William ;
Houlmann, Raphael ;
Bowles, Joseph ;
Zbinden, Hugo ;
Brunner, Nicolas .
PHYSICAL REVIEW APPLIED, 2017, 7 (05)
[8]   100-Gbit/s Integrated Quantum Random Number Generator Based on Vacuum Fluctuations [J].
Bruynsteen, Cedric ;
Gehring, Tobias ;
Lupo, Cosmo ;
Bauwelinck, Johan ;
Yin, Xin .
PRX QUANTUM, 2023, 4 (01)
[9]   Source-Independent Quantum Random Number Generation [J].
Cao, Zhu ;
Zhou, Hongyi ;
Yuan, Xiao ;
Ma, Xiongfeng .
PHYSICAL REVIEW X, 2016, 6 (01)
[10]   Multi-core fiber integrated multi-port beam splitters for quantum information processing [J].
Carine, J. ;
Canas, G. ;
Skrzypczyk, P. ;
Supic, I ;
Guerrero, N. ;
Garcia, T. ;
Pereira, L. ;
Prosser, M. A. S. ;
Xavier, G. B. ;
Delgado, A. ;
Walborn, S. P. ;
Cavalcanti, D. ;
Lima, G. .
OPTICA, 2020, 7 (05) :542-550