Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries

被引:78
作者
Guo, Ruiql [1 ,2 ]
Zhang, Kun [1 ]
Zhao, Wenbin [1 ]
Hu, Zhifan [1 ]
Li, Shuqiang [1 ]
Zhong, Yuxi [1 ]
Yong, Rong [3 ,4 ]
Wang, Xinran [1 ,2 ]
Wang, Jiantao [3 ,4 ]
Wu, Chuan [1 ,2 ]
Bai, Ying [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
[3] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[4] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
来源
ENERGY MATERIAL ADVANCES | 2023年 / 4卷
基金
中国国家自然科学基金;
关键词
SECONDARY BATTERIES; CHEMICAL-STABILITY; IONIC-CONDUCTIVITY; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ELECTROLYTES; INTERPHASE FORMATION; GLASS ELECTROLYTES; METAL BATTERIES; DENDRITE GROWTH; RECENT PROGRESS;
D O I
10.34133/energymatadv.0022
中图分类号
O59 [应用物理学];
学科分类号
摘要
All-solid-state lithium batteries are considered as the priority candidates for next-generation energy storage devices due to their better safety and higher energy density. As the key part of solid-state batteries, solid-state electrolytes have made certain research progress in recent years. Among the various types of solid-state electrolytes, sulfide electrolytes have received extensive attention because of their high room-temperature ionic conductivity and good moldability. However, sulfide-based solid-state batteries are still in the research stage. This situation is mainly due to the fact that the application of sulfide electrolytes still faces challenges in particular of interfacial issues, mainly including chemical and electrochemical instability, unstable interfacial reaction, and solid-solid physical contact between electrolyte and electrode. Here, this review provides a comprehensive summary of the existing interfacial issues in the fabrication of sulfide-based solid-state batteries. The in-depth mechanism of the interfacial issues and the current research progress of the main coping strategies are discussed in detail. Finally, we also present an outlook on the future development of sulfide-based solid-state batteries to guide the rational design of next-generation high-energy solid-state batteries.
引用
收藏
页数:31
相关论文
共 169 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Ledeuil, Jean-Bernard ;
Viallet, Virginie ;
Seznec, Vincent ;
Dedryvere, Remi .
CHEMISTRY OF MATERIALS, 2017, 29 (09) :3883-3890
[3]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[4]   Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode [J].
Bi, Yujing ;
Tao, Jinhui ;
Wu, Yuqin ;
Li, Linze ;
Xu, Yaobin ;
Hu, Enyuan ;
Wu, Bingbin ;
Hu, Jiangtao ;
Wang, Chongmin ;
Zhan, Ji-Guang ;
Qi, Yue ;
Xiao, Jie .
SCIENCE, 2020, 370 (6522) :1313-+
[5]   Air Stability and Interfacial Compatibility of Sulfide Solid Electrolytes for Solid-State Lithium Batteries: Advances and Perspectives [J].
Cai, Yinghui ;
Li, Chunli ;
Zhao, Zhikun ;
Mu, Daobin ;
Wu, Borong .
CHEMELECTROCHEM, 2022, 9 (05)
[6]   Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Choi, Seong-Hyeon ;
Kim, Namhyung ;
Sung, Jaekyung ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :110-135
[7]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[8]   Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application [J].
Chen, Shaojie ;
Xie, Dongjiu ;
Liu, Gaozhan ;
Mwizerwa, Jean Pierre ;
Zhang, Qiang ;
Zhao, Yanran ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ENERGY STORAGE MATERIALS, 2018, 14 :58-74
[9]   Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping [J].
Chen, Ting ;
Zhang, Long ;
Zhang, Zhaoxing ;
Li, Peng ;
Wang, Hongqiang ;
Yu, Chuang ;
Yan, Xinlin ;
Wang, Limin ;
Xu, Bo .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (43) :40808-40816
[10]   Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries [J].
Cheng, Zhu ;
Liu, Ming ;
Ganapathy, Swapna ;
Li, Chao ;
Li, Zhaolong ;
Zhang, Xiaoyu ;
He, Ping ;
Zhou, Haoshen ;
Wagemaker, Marnix .
JOULE, 2020, 4 (06) :1311-1323