OpenSpyrit: an ecosystem for open single-pixel hyperspectral imaging

被引:6
作者
Martins, Guilherme Beneti [1 ]
Mahieu-Williame, Laurent [1 ]
Baudier, Thomas [1 ]
Ducros, Nicolas [1 ,2 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, INSA Lyon, UJM St Etienne,CNRS,Inserm,CREATIS,UMR 5220,U1294, F-69621 Lyon, France
[2] Inst Univ France IUF, Paris, France
关键词
RECONSTRUCTION;
D O I
10.1364/OE.483937
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper describes OpenSpyrit, an open access and open source ecosystem for reproducible research in hyperspectral single-pixel imaging, composed of SPAS (a Python single-pixel acquisition software), SPYRIT (a Python single-pixel reconstruction toolkit) and SPIHIM (a single-pixel hyperspectral image collection). The proposed OpenSpyrit ecosystem responds to the need for reproducibility and benchmarking in single-pixel imaging by providing open data and open software. The SPIHIM collection, which is the first open-access FAIR dataset for hyperspectral single-pixel imaging, currently includes 140 raw measurements acquired using SPAS and the corresponding hypercubes reconstructed using SPYRIT. The hypercubes are reconstructed by both inverse Hadamard transformation of the raw data and using the denoised completion network (DC-Net), a data-driven reconstruction algorithm. The hypercubes obtained by inverse Hadamard transformation have a native size of 64 x 64 x 2048 for a spectral resolution of 2.3 nm and a spatial resolution that is comprised between 182.4 mu m and 15.2 mu m depending on the digital zoom. The hypercubes obtained using the DC-Net are reconstructed at an increased resolution of 128 x 128 x 2048. The OpenSpyrit ecosystem should constitute a reference to support benchmarking for future developments in single-pixel imaging. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:15599 / 15614
页数:16
相关论文
共 47 条
  • [1] Sparse Recovery of Hyperspectral Signal from Natural RGB Images
    Arad, Boaz
    Ben-Shahar, Ohad
    [J]. COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 19 - 34
  • [2] Compressive Coded Aperture Spectral Imaging
    Arce, Gonzalo R.
    Brady, David J.
    Carin, Lawrence
    Arguello, Henry
    Kittle, David S.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 105 - 115
  • [3] aviris, AVIRIS AIRB VIS INFR
  • [4] Learning-Based Compressive Subsampling
    Baldassarre, Luca
    Li, Yen-Huan
    Scarlett, Jonathan
    Gozcu, Baran
    Bogunovic, Ilija
    Cevher, Volkan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 809 - 822
  • [5] On the use of deep learning for computational imaging
    Barbastathis, George
    Ozcan, Aydogan
    Situ, Guohai
    [J]. OPTICA, 2019, 6 (08): : 921 - 943
  • [6] Beneti Martins G., 2023, SINGLE PIXEL ACQUISI
  • [7] Hyperspectral imaging: a review of best practice, performance and pitfalls for in-line and on-line applications
    Boldrini, Barbara
    Kessler, Waltraud
    Rebner, Karsten
    Kessler, Rudolf W.
    [J]. JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2012, 20 (05) : 483 - 508
  • [8] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [9] Computational Snapshot Multispectral Cameras Toward dynamic capture of the spectral world
    Cao, Xun
    Yue, Tao
    Lin, Xing
    Lin, Stephen
    Yuan, Xin
    Dai, Qionghai
    Carin, Lawrence
    Brady, David J.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2016, 33 (05) : 95 - 108
  • [10] Coates A., 2011, P 14 INT C ARTIFICIA, P215