Tailoring proton transfer species on the membrane surface: An approach to enhance proton conductivity for polymer electrolyte membrane fuel cell

被引:3
|
作者
Pokprasert, Adisak [1 ]
Chirachanchai, Suwabun [1 ,2 ]
机构
[1] Chulalongkorn Univ, Petr & Petrochem Coll, Ctr Excellence Bioresources Adv Mat B2A CE, Soi Chula 12,Phyathai Rd, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Ctr Excellence Petrochem & Mat Technol, Bangkok 10330, Thailand
关键词
Proton exchange membrane; Fuel cell; Surface modification; Heterocycles; Layer-by-layer; Polymer brushes; EXCHANGE MEMBRANES; LAYER; ACID; DEPOSITION; COPOLYMERS; IMIDAZOLE; ACCEPTOR; PEMFC; DONOR; TRANSPORT;
D O I
10.1016/j.polymer.2022.125583
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The efficiency of proton conductivity in proton exchange membrane (PEM) depends on how proton species can effectively transfer through the membrane either in hydrous system or anhydrous system. Although the incor-poration of proton donors and/or acceptors via chemical modification, blending, including preparing composites in polymer solution state before casting the membrane is a general approach, the proton transfer species may not be effectively functioned as they were randomly existed in PEM. As proton transfer initially occurs at the PEM surface, the decoration of the proton transfer species on the surface can be considered as an alternative choice to develop PEM. The surface modifications can be carried out by attaching the functional molecules and/or polymers to favor the proton transfer. The present review summarizes the approaches to construct the PEM surface with proton conductive species, especially via layer-by-layer, and polymer brushes to enhance the PEM performances.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity
    Pandey, Ravi P.
    Shahi, Vinod K.
    JOURNAL OF POWER SOURCES, 2015, 299 : 104 - 113
  • [42] Thermodynamic modelling of a proton exchange membrane fuel cell
    Ay, M.
    Midilli, A.
    INTERNATIONAL JOURNAL OF EXERGY, 2006, 3 (01) : 16 - 44
  • [43] A REVIEW ON MODELING OF PROTON EXCHANGE MEMBRANE FUEL CELL
    Hamdollahi, Sahra
    Jun, Luo
    CHEMICAL INDUSTRY & CHEMICAL ENGINEERING QUARTERLY, 2023, 29 (01) : 61 - 74
  • [44] Evaluation of current distribution in a proton exchange membrane fuel cell by segmented cell approach
    Rajalakshmi, N
    Raja, M
    Dhathathreyan, KS
    JOURNAL OF POWER SOURCES, 2002, 112 (01) : 331 - 336
  • [45] Surface modification for the perfluorosulfonate proton-conducting electrolyte membrane
    Zhang, Dongfang
    APPLIED SURFACE SCIENCE, 2009, 255 (07) : 4119 - 4122
  • [46] Polybenzimidazoles as proton exchange membrane in fuel cell applications
    Chikhaliyae, Navin P.
    Rathwa, Yashesh J.
    Likhariya, Taruna
    HIGH PERFORMANCE POLYMERS, 2021, 33 (09) : 998 - 1011
  • [47] Gradient Membrane Electrode of Proton Exchange Membrane Fuel Cell
    Zheng J.
    Dai N.
    Wang Q.
    Zhu S.
    Zheng J.
    Tongji Daxue Xuebao/Journal of Tongji University, 2018, 46 : 228 - 236
  • [48] Physically stable proton exchange membrane with ordered electrolyte for elevated temperature PEM fuel cell
    Guo, Wei
    Tang, Haolin
    Sun, Meiling
    Yang, Huan
    Pan, Mu
    Duan, Jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) : 9782 - 9791
  • [49] Response of a proton exchange membrane fuel cell to step changes in mass flow rates
    Kupeli, Seda
    Celik, Erman
    Karagoz, Irfan
    FUEL CELLS, 2021, 21 (04) : 338 - 346
  • [50] Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells
    Chen, Junyu
    Cao, Jiamu
    Zhang, Rongji
    Zhou, Jing
    Wang, Shimin
    Liu, Xu
    Zhang, Tinghe
    Tao, Xinyuan
    Zhang, Yufeng
    MEMBRANES, 2021, 11 (11)