Autonomous Multi-UAV Path Planning in Pipe Inspection Missions Based on Booby Behavior

被引:6
作者
Aljalaud, Faten [1 ,2 ]
Kurdi, Heba [1 ,3 ]
Youcef-Toumi, Kamal [3 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Comp Sci Dept, Riyadh 11451, Saudi Arabia
[2] Imam Mohammad Ibn Saud Islamic Univ, Comp Sci Dept, Riyadh 11564, Saudi Arabia
[3] MIT, Mech Engn Dept, Cambridge, MA 02139 USA
关键词
inspection; bio-inspired algorithms; unmanned aerial vehicle; booby; multi-UAV; path planning; pipes; UNMANNED AERIAL VEHICLES; GENETIC ALGORITHM; FORAGING STRATEGY; OPTIMIZATION; COLONY;
D O I
10.3390/math11092092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a novel path planning heuristic for multi-UAV pipe inspection missions inspired by the booby bird's foraging behavior. The heuristic enables each UAV to find an optimal path that minimizes the detection time of defects in pipe networks while avoiding collisions with obstacles and other UAVs. The proposed method is compared with four existing path planning algorithms adapted for multi-UAV scenarios: ant colony optimization (ACO), particle swarm optimization (PSO), opportunistic coordination, and random schemes. The results show that the booby heuristic outperforms the other algorithms in terms of mean detection time and computational efficiency under different settings of defect complexity and number of UAVs.
引用
收藏
页数:23
相关论文
共 65 条
[51]   Multiple UAV Systems: A Survey [J].
Skorobogatov, Georgy ;
Barrado, Cristina ;
Salami, Esther .
UNMANNED SYSTEMS, 2020, 8 (02) :149-169
[52]   Flexible foraging behaviour in a marine predator, the Masked booby (Sula dactylatra), according to foraging locations and environmental conditions [J].
Sommerfeld, Julia ;
Kato, Akiko ;
Ropert-Coudert, Yan ;
Garthe, Stefan ;
Wilcox, Chris ;
Hindell, Mark A. .
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2015, 463 :79-86
[53]   Foraging Parameters Influencing the Detection and Interpretation of Area-Restricted Search Behaviour in Marine Predators: A Case Study with the Masked Booby [J].
Sommerfeld, Julia ;
Kato, Akiko ;
Ropert-Coudert, Yan ;
Garthe, Stefan ;
Hindell, Mark A. .
PLOS ONE, 2013, 8 (05)
[54]   A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP [J].
Strak, Lukasz ;
Skinderowicz, Rafal ;
Boryczka, Urszula ;
Nowakowski, Arkadiusz .
ENTROPY, 2019, 21 (08)
[55]   A New Discrete Particle Swarm Optimization Algorithm [J].
Strasser, Shane ;
Goodman, Rollie ;
Sheppard, John ;
Butcher, Stephyn .
GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, :53-60
[56]   3D Optimal Surveillance Trajectory Planning for Multiple UAVs by Using Particle Swarm Optimization With Surveillance Area Priority [J].
Teng, Hu ;
Ahmad, Ishtiaq ;
Alamgir, M. S. M. ;
Chang, Kyunghi .
IEEE ACCESS, 2020, 8 :86316-86327
[57]   Heuristic approaches in robot path planning: A survey [J].
Thi Thoa Mac ;
Copot, Cosmin ;
Duc Trung Tran ;
De Keyser, Robin .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 86 :13-28
[58]   Particle swarm optimization for Traveling Salesman Problem [J].
Wang, KP ;
Huang, L ;
Zhou, CG ;
Pang, W .
2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, :1583-1585
[59]   Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment [J].
Weimerskirch, H ;
Le Corre, M ;
Jaquemet, S ;
Marsac, F .
MARINE ECOLOGY PROGRESS SERIES, 2005, 288 :251-261
[60]   Foraging strategy of masked boobies from the largest colony in the world: relationship to environmental conditions and fisheries [J].
Weimerskirch, Henri ;
Le Corre, Matthieu ;
Bost, Charles A. .
MARINE ECOLOGY PROGRESS SERIES, 2008, 362 :291-302