Contact topology and non-equilibrium thermodynamics

被引:4
作者
Entov, Michael [1 ]
Polterovich, Leonid [2 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
contact manifold; Hamiltonian flow; non-equilibrium thermodynamics; contact thermodynamics; Ising model; Legendrian submanifold; 82Cxx; 53Dxx; 37Jxx; AUBRY-MATHER THEORY; DYNAMICS; MODEL; TIME;
D O I
10.1088/1361-6544/acd1ce
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a method, based on contact topology, of showing the existence of semi-infinite trajectories of contact Hamiltonian flows which start on one Legendrian submanifold and asymptotically converge to another Legendrian submanifold. We discuss a mathematical model of non-equilibrium thermodynamics where such trajectories play a role of relaxation processes, and illustrate our results in the case of the Glauber dynamics for the mean field Ising model.
引用
收藏
页码:3349 / 3375
页数:27
相关论文
共 33 条
[1]  
Aganagic M, 2014, ADV THEOR MATH PHYS, V18, P827
[2]  
Anahory Simoes A., 2020, WORKSHOP JOINT STRUC, P247
[3]   Contact symmetries and Hamiltonian thermodynamics [J].
Bravetti, A. ;
Lopez-Monsalvo, C. S. ;
Nettel, F. .
ANNALS OF PHYSICS, 2015, 361 :377-400
[4]  
Cieliebak K., 2012, Symplectic geometry of affine complex manifolds
[5]  
Eliashberg Y, 2000, GEOM FUNCT ANAL, P560
[6]  
Entov M., FILTERED RELATIVE SY
[7]   Legendrian persistence modules and dynamics [J].
Entov, Michael ;
Polterovich, Leonid .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (02)
[8]   Lagrangian tetragons and instabilities in Hamiltonian dynamics [J].
Entov, Michael ;
Polterovich, Leonid .
NONLINEARITY, 2017, 30 (01) :13-34
[9]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[10]  
Fried S, 2023, STAT INFER STOCH PRO, V26, P413, DOI 10.1007/s11203-022-09283-7