Biomaterials for Tissue-Engineered Treatment of Tendinopathy in Animal Models: A Systematic Review

被引:1
|
作者
Li, Dijun [1 ,2 ]
Wang, Guishan [3 ]
Li, Jiarong [4 ]
Yan, Lei [1 ]
Liu, Haifeng [1 ]
Jiu, Jingwei [1 ]
Li, Xiaoke [1 ]
Li, Jiao Jiao [4 ,5 ]
Wang, Bin [1 ,2 ,6 ]
机构
[1] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Orthopaed Surg, Hangzhou, Peoples R China
[2] Shanxi Med Univ, Affiliated Hosp 2, Dept Orthopaed Surg, Taiyuan, Peoples R China
[3] Shanxi Med Univ, Dept Biochem & Mol Biol, Taiyuan, Peoples R China
[4] Univ Technol Sydney, Fac Engn & IT, Sch Biomed Engn, Ultimo, Australia
[5] Univ Technol Sydney, Sch Biomed Engn, Fac Engn & IT, Ultimo, NSW 2007, Australia
[6] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Orthopaed Surg, Hangzhou 360001, Peoples R China
基金
中国国家自然科学基金; 英国医学研究理事会;
关键词
tendon repair; tendinopathy; animal models; biomaterials; tissue engineering; ROTATOR CUFF REPAIR; ACHILLES-TENDON REPAIR; SMALL-INTESTINAL SUBMUCOSA; MARROW STROMAL CELLS; BOVINE PLATELET GEL; IN-VIVO; STEM-CELLS; REGENERATIVE MICROENVIRONMENT; MULTILAYERED SCAFFOLDS; REMODELING PROCESS;
D O I
10.1089/ten.teb.2022.0178
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Impact statementThis review provides an up-to-date summary of the preclinical landscape where tissue engineering treatments involving biomaterials were tested in animal models of tendinopathy. Using studies published in the last 30 years, novel perspectives were presented on the animal species used, injury site, follow-up time, biomaterial selection together with addition of any supplementing factor, and reporting of histological and biomechanical results, as well as a summary of individual findings of each study. This review gives unique insight into biomaterial-based tissue engineering strategies that have progressed to testing in animal models of tendinopathy, which will help shape future research in the field and propel the clinical translation of discoveries. Objective: To conduct a systematic review of studies reporting the treatment of tendon injury using biomaterials in animal models.Methods: A systematic search was conducted to retrieve studies involving animal models of tendon repair using biomaterials, in PubMed (database construction to August 2022) and Ovid-Embase (1946 to August 2022). Data related to tendon repair with biomaterials were extracted by two researchers, respectively. Risk of bias was assessed following the Cochrane Handbook for Systematic Reviews of Interventions. A statistical analysis was performed based on the classification of tendon repair biomaterials included in our study.Results: A total of 8413 articles were retrieved, with 78 studies included in our analysis. For tendon repair in animal models using biomaterials, the most commonly seen characteristics were as follows: naturally derived biomaterials, rabbits and rats as animal models, surgery as the injury model, and the Achilles tendon as the injury site. The histology and biomechanical recovery of tendon injury following repair are affected by different biomaterials.Conclusion: Studies of tendon repair in animal models indicate that biomaterials can significantly improve repair outcomes, including tendon structure and biomechanics. Among effective biomaterial strategies are the use of new composites and incorporation of cells or growth factors into the material, both of which provide obvious benefits for tendon healing. More high-quality preclinical studies are required to encourage the translation of biomaterials into clinical practice for tendon repair.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 50 条
  • [11] Tissue-engineered models of human tumors for cancer research
    Villasante, Aranzazu
    Vunjak-Novakovic, Gordana
    EXPERT OPINION ON DRUG DISCOVERY, 2015, 10 (03) : 257 - 268
  • [12] Tissue-Engineered Models for Glaucoma Research
    Lu, Renhao
    Soden, Paul A.
    Lee, Esak
    MICROMACHINES, 2020, 11 (06) : 1 - 31
  • [13] Applications of Regenerative Tissue-Engineered Scaffolds for Treatment of Spinal Cord Injury
    Bradshaw, Katherine J.
    Leipzig, Nic D.
    TISSUE ENGINEERING PART A, 2025, 31 (3-4) : 108 - 125
  • [14] Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing
    Bedard, Patrick
    Gauvin, Sara
    Ferland, Karel
    Caneparo, Christophe
    Pellerin, Eve
    Chabaud, Stephane
    Bolduc, Stephane
    BIOENGINEERING-BASEL, 2020, 7 (03): : 1 - 40
  • [15] Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs
    Schuurman, Wouter
    Levett, Peter A.
    Pot, Michiel W.
    van Weeren, Paul Rene
    Dhert, Wouter J. A.
    Hutmacher, Dietmar W.
    Melchels, Ferry P. W.
    Klein, Travis J.
    Malda, Jos
    MACROMOLECULAR BIOSCIENCE, 2013, 13 (05) : 551 - 561
  • [16] Antimicrobial Biomaterials for the Healing of Infected Bone Tissue: A Systematic Review of Microtomographic Data on Experimental Animal Models
    Mariano, Lorena Castro
    Fernandes, Maria Helena Raposo
    Gomes, Pedro Sousa
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2022, 13 (04)
  • [17] A Systematic Review of Tissue Engineered Meniscus and Replacement Strategies: Preclinical Models
    Haddad, Behrooz
    Haddad, Behzad
    Konan, Sujith
    Adesida, Adetola
    Khan, Wasim S.
    CURRENT STEM CELL RESEARCH & THERAPY, 2013, 8 (03) : 232 - 242
  • [18] Histopathological Scores for Tissue-Engineered, Repaired and Degenerated Tendon: A Systematic Review of the Literature
    Loppini, Mattia
    Longo, Umile Giuseppe
    Niccoli, Giuseppe
    Khan, Wasim S.
    Maffulli, Nicola
    Denaro, Vincenzo
    CURRENT STEM CELL RESEARCH & THERAPY, 2015, 10 (01) : 43 - 55
  • [19] Tissue-engineered mesenchymal stem cell constructs alleviate tendinopathy by suppressing vascularization
    Li, Dijun
    Jiu, Jingwei
    Liu, Haifeng
    Yan, Xiaojun
    Li, Xiaoke
    Yan, Lei
    Zhang, Jing
    Fan, Zijuan
    Li, Songyan
    Du, Guangyuan
    Li, Jiao Jiao
    Du, Yanan
    Liu, Wei
    Wang, Bin
    BIOACTIVE MATERIALS, 2024, 36 : 474 - 489
  • [20] Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model
    Wang, Shaoyi
    Zhang, Zhiyuan
    Xia, Lunguo
    Zhao, Jun
    Sun, Xiaojuan
    Zhang, Xiuli
    Ye, Dongxia
    Uludag, Hasan
    Jiang, Xinquan
    BONE, 2010, 46 (01) : 91 - 100