Existence and Mittag-Leffler-Ulam-stability results of sequential fractional hybrid pantograph equations

被引:4
作者
Houas, Mohamed [1 ]
Abbas, Mohamed I. [2 ]
Martinez, Francisco [3 ]
机构
[1] Khemis Miliana Univ, Lab FIMA, UDBKM, Ain Defla, Algeria
[2] Alexandria Univ, Fac Sci, Dept Math & Comp Sci, Alexandria 21511, Egypt
[3] Technol Univ Cartagena, Dept Appl Math & Stat, Cartagena 30203, Spain
关键词
Fractional derivative; Fixed point; Existence; Fractional pantograph equation; Mittag-Leffler-Ulam stability;
D O I
10.2298/FIL2320891H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this present work, the existence and uniqueness of solutions for fractional pantograph differential equations involving Riemann-Liouville and Caputo fractional derivatives are established by applying contraction mapping principle and Leray-Schauder's alternative. The Mittag-Leffler-Ulam stability results are also obtained via generalized singular Gronwall's inequality. Finally, we give an illustrative example.
引用
收藏
页码:6891 / 6903
页数:13
相关论文
共 4 条
[1]   EXISTENCE RESULTS AND THE ULAM STABILITY FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH HYBRID PROPORTIONAL-CAPUTO DERIVATIVES [J].
Abbas, Mohamed, I .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020,
[2]  
Abbas MI, 2015, EUR J PURE APPL MATH, V8, P478
[3]   Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions [J].
Akdemir, Ahmet Ocak ;
Karaoglan, Ali ;
Ragusa, Maria Alessandra ;
Set, Erhan .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[4]  
Ali G., 2021, INT J APPL COMPUT MA, V7, P2, DOI [10.1007/s40819-020-00932-0, DOI 10.1007/S40819-020-00932-0]