Numerical simulations of a mixed finite element method for damped plate vibration problems

被引:1
作者
Zhang, Ruxin [1 ]
Yin, Zhe [1 ]
Zhu, Ailing [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Peoples R China
来源
MATHEMATICAL MODELLING AND CONTROL | 2023年 / 3卷 / 01期
关键词
mixed finite element; semi-discrete schemes; backward Euler fully discrete schemes; optimal order error estimate; numerical simulation;
D O I
10.3934/mmc.2023002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mixed finite element method can reduce the requirement for the smoothness of the finite element space and simplify the interpolation space for finite elements, and hence is especially effective in solving high order differential equations. In this work, we establish a mixed finite element scheme for the initial boundary conditions of damped plate vibrations and prove the existence and uniqueness of the solution of the semi-discrete and backward Euler fully discrete schemes. We use linear element approximation for the introduced intermediate variables, conduct the error analysis, and obtain the optimal order error estimate. We verify the efficiency and the accuracy of the mixed finite element scheme via numerical case studies and quantify the influence of the damping coefficient on the frequency and amplitude of the vibration.
引用
收藏
页码:7 / 22
页数:16
相关论文
共 33 条
[21]   A mixed virtual element method for the vibration problem of clamped Kirchhoff plate [J].
Meng, Jian ;
Mei, Liquan .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (05)
[22]   A PIECEWISE LINEAR FINITE ELEMENT METHOD FOR THE BUCKLING AND THE VIBRATION PROBLEMS OF THIN PLATES [J].
Mora, David ;
Rodriguez, Rodolfo .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :1891-1917
[23]   QUASI-DEGENERACIES IN PLATE VIBRATION PROBLEMS [J].
NAIR, PS ;
DURVASULA, S .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1973, 15 (12) :975-986
[24]   A FINITE-ELEMENT MODEL OF CRACKED PLATES AND APPLICATION TO VIBRATION PROBLEMS [J].
QIAN, GL ;
GU, SN ;
JIANG, JS .
COMPUTERS & STRUCTURES, 1991, 39 (05) :483-487
[25]  
Rock T., 1974, International Journal of Earthquake Engineering & Structural Dynamics, V3, P51, DOI 10.1002/eqe.4290030105
[26]   Compositional flow modeling using a multi-point flux mixed finite element method [J].
Singh, Gurpreet ;
Wheeler, Mary F. .
COMPUTATIONAL GEOSCIENCES, 2016, 20 (03) :421-435
[27]  
Stein O., 2019, MIXED FINITE ELEMENT, P1, DOI [10.48550/arXiv.1911.08029, DOI 10.48550/ARXIV.1911.08029]
[28]  
THOMEE V, 1984, LECT NOTES MATH, V1054, P1
[29]  
Werfalli N. M., 2012, INT J MECH ENG, V2, P59
[30]   Mesh-free least-squares-based finite difference method for large-amplitude free vibration analysis of arbitrarily shaped thin plates [J].
Wu, W. X. ;
Shu, C. ;
Wang, C. M. .
JOURNAL OF SOUND AND VIBRATION, 2008, 317 (3-5) :955-974