Graph-Based Information Block Detection in Infographic With Gestalt Organization Principles

被引:5
作者
Lin, Jie [1 ,2 ]
Cai, Yi [1 ,2 ]
Wu, Xin [1 ,2 ]
Lu, Jianwei [1 ,2 ]
机构
[1] South China Univ Technol, Sch Software Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] SouthChina Univ Technol, Key Lab Big Data & Intelligent Robot, Minist Educ, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Visualization; Data visualization; Semantics; Organizations; Layout; Task analysis; Infographic; deep learning; graph-based approach; information block detection; RECOGNITION; PSYCHOLOGY;
D O I
10.1109/TVCG.2021.3130071
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An infographic is a type of visualization chart that displays pieces of information through information blocks. Existing information block detection work utilizes spatial proximity to group elements into several information blocks. However, prior studies ignore the chromatic and structural features of the infographic, resulting in incorrect omissions when detecting information blocks. To alleviate this kind of error, we use a scene graph to represent an infographic and propose a graph-based information block detection model to group elements based on Gestalt Organization Principles (spatial proximity, chromatic similarity, and structural similarity principle). We also construct a new dataset for information block detection. Quantitative and qualitative experiments show that our model can detect the information blocks in the infographic more effectively compared with the spatial proximity-based method.
引用
收藏
页码:1705 / 1718
页数:14
相关论文
共 55 条
[1]  
Agarwal A, 2020, Arxiv, DOI arXiv:2005.08045
[2]  
[Anonymous], 2011, P S US INT SOFTW TEC, DOI [DOI 10.1145/2047196.2047247, 10.1145/2047196.2047247]
[3]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[4]   Beyond Memorability: Visualization Recognition and Recall [J].
Borkin, Michelle A. ;
Bylinskii, Zoya ;
Kim, Nam Wook ;
Bainbridge, Constance May ;
Yeh, Chelsea S. ;
Borkin, Daniel ;
Pfister, Hanspeter ;
Oliva, Aude .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) :519-528
[5]   What Makes a Visualization Memorable? [J].
Borkin, Michelle A. ;
Vo, Azalea A. ;
Bylinskii, Zoya ;
Isola, Phillip ;
Sunkavalli, Shashank ;
Oliva, Aude ;
Pfister, Hanspeter .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) :2306-2315
[6]   Timelines Revisited: A Design Space and Considerations for Expressive Storytelling [J].
Brehmer, Matthew ;
Lee, Bongshin ;
Bach, Benjamin ;
Riche, Nathalie Henry ;
Munzner, Tamara .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (09) :2151-2164
[7]   Online recognition of sketched arrow-connected diagrams [J].
Bresler, Martin ;
Prusa, Daniel ;
Hlavac, Vaclav .
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2016, 19 (03) :253-267
[8]  
Bylinskii Z, 2017, Arxiv, DOI arXiv:1709.09215
[9]   Learning Visual Importance for Graphic Designs and Data Visualizations [J].
Bylinskii, Zoya ;
Kim, Nam Wook ;
O'Donovan, Peter ;
Alsheikh, Sami ;
Madan, Spandan ;
Pfister, Hanspeter ;
Durand, Fredo ;
Russell, Bryan ;
Hertzmann, Aaron .
UIST'17: PROCEEDINGS OF THE 30TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, 2017, :57-69
[10]   Counterfactual Critic Multi-Agent Training for Scene Graph Generation [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
He, Xiangnan ;
Pu, Shiliang ;
Chang, Shih-Fu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4612-4622