Genome-Wide Identification and Characterization of the Trehalose-6-Phosphate Synthetase Gene Family in Chinese Cabbage (Brassica rapa) and Plasmodiophora brassicae during Their Interaction

被引:6
|
作者
Kong, Liyan [1 ]
Liu, Jiaxiu [1 ]
Zhang, Wenjun [1 ]
Li, Xiaonan [1 ]
Zhang, Yuting [1 ]
Chen, Xueyu [1 ]
Zhan, Zongxiang [1 ]
Piao, Zhongyun [1 ]
机构
[1] Shenyang Agr Univ, Coll Hort, Mol Biol Vegetable Lab, Shenyang 110866, Peoples R China
关键词
Trehalose; TPS; clubroot; Plasmodiophora brassicae; Brassica rapa; TREHALOSE PHOSPHATE SYNTHASE; METABOLISM; CLONING; GROWTH; PLANT; BIOSYNTHESIS; EXPRESSION; PATHOGEN; TPS;
D O I
10.3390/ijms24020929
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trehalose is a nonreducing disaccharide that is widely distributed in various organisms. Trehalose-6-phosphate synthase (TPS) is a critical enzyme responsible for the biosynthesis of trehalose, which serves important functions in growth and development, defense, and stress resistance. Although previous studies have found that the clubroot pathogen Plasmodiophora brassicae can lead to the accumulation of trehalose in infected Arabidopsis organs, it has been proposed that much of the accumulated trehalose is derived from the pathogen. At present, there is very little evidence to verify this view. In this study, a comprehensive analysis of the TPS gene family was conducted in Brassica rapa and Plasmodiophora brassicae. A total of 14 Brassica rapa TPS genes (BrTPSs) and 3 P. brassicae TPS genes (PbTPSs) were identified, and the evolutionary characteristics, functional classification, and expression patterns were analyzed. Fourteen BrTPS genes were classified into two distinct classes according to phylogeny and gene structure. Three PbTPSs showed no significant differences in gene structure and protein conserved motifs. However, evolutionary analysis showed that the PbTPS2 gene failed to cluster with PbTPS1 and PbTPS3. Furthermore, cis-acting elements related to growth and development, defense and stress responsiveness, and hormone responsiveness were predicted in the promoter region of the BrTPS genes. Expression analysis of most BrTPS genes at five stages after P. brassicae interaction found no significant induction. Instead, the expression of the PbTPS genes of P. brassicae was upregulated, which was consistent with the period of trehalose accumulation. This study deepens our understanding of the function and evolution of BrTPSs and PbTPSs. Simultaneously, clarifying the biosynthesis of trehalose in the interaction between Brassica rapa and P. brassicae is also of great significance.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Genome-Wide Characterization of Trehalose-6-Phosphate Synthase Gene Family of Brassica napus and Potential Links with Agronomic Traits
    Hu, Ming
    Xie, Meili
    Cui, Xiaobo
    Huang, Junyan
    Cheng, Xiaohui
    Liu, Lijiang
    Liu, Shengyi
    Tong, Chaobo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [2] Identification of Expressed Genes During Infection of Chinese Cabbage (Brassica rapa subsp pekinensis) by Plasmodiophora brassicae
    Sundelin, Thomas
    Jensen, Dan F.
    Lubeck, Mette
    JOURNAL OF EUKARYOTIC MICROBIOLOGY, 2011, 58 (04) : 310 - 314
  • [3] Genome-Wide Identification and Characterization of the Trehalose-6-phosphate Synthetase (TPS) Gene Family in Watermelon (Citrullus lanatus) and Their Transcriptional Responses to Salt Stress
    Yuan, Gaopeng
    Liu, Junpu
    An, Guolin
    Li, Weihua
    Si, Wenjing
    Sun, Dexi
    Zhu, Yingchun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (01)
  • [4] Genome-wide identification of the ICS family genes and its role in resistance to Plasmodiophora brassicae in Brassica napus L
    Xue, Yujun
    Qian, Fang
    Guan, Wenjie
    Ji, Gaoxiang
    Geng, Rudan
    Li, Mengdi
    Li, Lixia
    Ullah, Naseeb
    Zhang, Chunyu
    Cai, Guangqin
    Wu, Xiaoming
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 270
  • [5] Genome-wide identification and characterization of the OFP gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Wang, Ruihua
    Han, Taili
    Sun, Jifeng
    Xu, Ligong
    Fan, Jingjing
    Cao, Hui
    Liu, Chunxiang
    PEERJ, 2021, 9
  • [6] Genome-Wide Identification of Trehalose-6-phosphate Synthase (TPS) Gene Family Reveals the Potential Role in Carbohydrate Metabolism in Peach
    Fan, Shihao
    Wang, Zhe
    Xiao, Yuansong
    Liang, Jiahui
    Zhao, Shilong
    Liu, Yihua
    Peng, Futian
    Guo, Jian
    GENES, 2024, 15 (01)
  • [7] Genome-Wide Identification and Analysis of Stress Response of Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase Genes in Quinoa
    Wang, Xiaoting
    Wang, Mingyu
    Huang, Yongshun
    Zhu, Peng
    Qian, Guangtao
    Zhang, Yiming
    Liu, Yuqi
    Zhou, Jingwen
    Li, Lixin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [8] Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage)
    Duan, Weike
    Song, Xiaoming
    Liu, Tongkun
    Huang, Zhinan
    Ren, Jun
    Hou, Xilin
    Li, Ying
    MOLECULAR GENETICS AND GENOMICS, 2015, 290 (01) : 239 - 255
  • [9] Genome-Wide Identification and Expression Analysis of the Trehalose-6-phosphate Synthase and Trehalose-6-phosphate Phosphatase Gene Families in Rose (Rosa hybrida cv 'Carola') under Different Light Conditions
    Fan, Yingdong
    Gao, Peng
    Zhou, Tong
    Pang, Siyu
    Zhang, Jinzhu
    Yang, Tao
    Zhang, Wuhua
    Dong, Jie
    Che, Daidi
    PLANTS-BASEL, 2024, 13 (01):
  • [10] Genome-Wide Analysis of the Trehalose-6-Phosphate Synthase (TPS) Gene Family and Expression Profiling of ScTPS Genes in Sugarcane
    Hu, Xin
    Wu, Zhuan-Di
    Luo, Zheng-Ying
    Burner, David M.
    Pan, Yong-Bao
    Wu, Cai-Wen
    AGRONOMY-BASEL, 2020, 10 (07):