Advances in machine learning for high value-added applications of lignocellulosic biomass

被引:28
作者
Ge, Hanwen [1 ]
Zheng, Jun [3 ]
Xu, Huanfei [1 ,2 ,4 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Minist Educ, Key Lab Pulp & Paper Sci & Technol, Jinan 250353, Peoples R China
[3] Tech Univ Munich, Arcisstr 21, D-80333 Munich, Germany
[4] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
Lignocellulose; Machine learning; High value utilization; Biomass; HYDROGEN-PRODUCTION; GASIFICATION; PRETREATMENT; ACID; OPTIMIZATION; PREDICTION; PARAMETERS; GA;
D O I
10.1016/j.biortech.2022.128481
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Lignocellulose can be converted into biofuel or functional materials to achieve high value-added utilization. Biomass utilization process is complex and multi-dimensional. This paper focuses on the biomass conversion reaction conditions, the preparation of biomass-based functional materials, the combination of biomass conversion and traditional wet chemistry, molecular simulation and process simulation. This paper analyzes the mechanism, advantages and disadvantages of important machine learning (ML) methods. The application examples of ML in different aspects of high value utilization of lignocellulose are summarized in detail. The challenges and future prospects of ML in this field are analyzed.
引用
收藏
页数:15
相关论文
共 148 条
[41]   Machine learning powered software for accurate prediction of biogas production: A case study on industrial-scale Chinese production data [J].
De Clercq, Djavan ;
Jalota, Devansh ;
Shang, Ruoxi ;
Ni, Kunyi ;
Zhang, Zhuxin ;
Khan, Areeb ;
Wen, Zongguo ;
Caicedo, Luis ;
Yuan, Kai .
JOURNAL OF CLEANER PRODUCTION, 2019, 218 :390-399
[42]   The correlation between the physicochemical properties and enzymatic hydrolyzability of hydrothermal pretreated wheat straw: A quantitative analysis [J].
Deng, Zhichao ;
Xia, Ao ;
Huang, Yun ;
Zhu, Xianqing ;
Zhu, Xun ;
Liao, Qiang .
BIORESOURCE TECHNOLOGY, 2022, 359
[43]   Machine learning prediction and experimental verification of Pt-modified nitride catalysts for ethanol reforming with reduced precious metal loading [J].
Denny, Steven R. ;
Lin, Zhexi ;
Porter, William N. ;
Artrith, Nongnuch ;
Chen, Jingguang G. .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 312
[44]   The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis [J].
Ding, Yanming ;
Zhang, Wenlong ;
Yu, Lei ;
Lu, Kaihua .
ENERGY, 2019, 176 :582-588
[45]   A novel machine learning-based approach for prediction of nitrogen content in hydrochar from hydrothermal carbonization of sewage [J].
Djandja, Oraleou Sangue ;
Duan, Pei-Gao ;
Yin, Lin-Xin ;
Wang, Zhi-Cong ;
Duo, Jia .
ENERGY, 2021, 232
[46]   A stacked regression ensemble approach for the quantitative determination of biomass feedstock compositions using near infrared spectroscopy [J].
Dumancas, Gerard ;
Adrianto, Indra .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 276
[47]   Data-driven identification and model predictive control of biomass gasification process for maximum energy production [J].
Elmaz, Furkan ;
Yucel, Ozgun .
ENERGY, 2020, 195
[48]   Fluorescence Lifetime Imaging as an In Situ and Label-Free Readout for the Chemical Composition of Lignin [J].
Escamez, Sacha ;
Terryn, Christine ;
Gandla, Madhavi Latha ;
Yassin, Zakiya ;
Scheepers, Gerhard ;
Nasholm, Torgny ;
Sundman, Ola ;
Jonsson, Leif J. ;
Lundberg-Felten, Judith ;
Tuominen, Hannele ;
Niittyla, Totte ;
Paes, Gabriel .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (51) :17381-17392
[49]   Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials [J].
Galbe, Mats ;
Wallberg, Ola .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (01)
[50]   Machine learning prediction of lignin content in poplar with Raman spectroscopy [J].
Gao, Wenli ;
Zhou, Liang ;
Liu, Shengquan ;
Guan, Ying ;
Gao, Hui ;
Hui, Bin .
BIORESOURCE TECHNOLOGY, 2022, 348