High-Performance Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol

被引:28
作者
Zhang, Heng [1 ]
Chen, Jiyi [2 ]
Han, Xiaoyu [1 ,3 ]
Pan, Yutong [1 ]
Hao, Ziwen [2 ]
Tang, Shixiong [1 ]
Zi, Xiaohui [1 ]
Zhang, Zhenmei [2 ]
Gao, Pengju [1 ]
Li, Maoshuai [1 ]
Lv, Jing [1 ]
Ma, Xinbin [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Natl Ind Educ Integrat Platform Energy Storage, Key Lab Green Chem Technol,Minist Educ,Collaborat, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROTALCITE-LIKE PRECURSORS; ETHYL-ACETATE; ACTIVE-SITE; OXIDE; ZR; CONVERSION;
D O I
10.1021/acs.iecr.4c00357
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cu/ZnO/Al2O3 catalysts are widely used in methanol synthesis due to their low cost and high catalytic activity. The structural and surface characteristics of Cu are crucial to the formation of the active sites for methanol production. In this study, a series of methods for the synthesis of Cu/ZnO/Al2O3 are employed to modulate the catalyst structure and catalytic efficiency for the hydrogenation of CO2 to methanol. A correlation of catalytic activity with the Cu-0 surface area and Cu particle sizes has been established. The Cu/ZnO/Al2O3 catalyst derived from hydrotalcite-like precursor (CZA-LDH) exhibits the maximum Cu-0 specific surface area, the smallest Cu particle size, and high dispersion of elements, yielding the largest methanol production rate, which is comparable to the commercial Cu catalyst. Stability testing shows that the CZA-LDH catalyst can retain similar to 94% of the initial activity. The in situ Fourier transform infrared spectroscopy analysis indicates that HCOO*, CH3O* intermediates, and product CH3OH are generated on the catalyst surface, and the reaction follows the formate pathway.
引用
收藏
页码:6210 / 6221
页数:12
相关论文
共 64 条
[1]   Design of Flame-Made ZnZrOx Catalysts for Sustainable Methanol Synthesis from CO2 [J].
Araujo, Thaylan Pinheiro ;
Morales-Vidal, Jordi ;
Zou, Tangsheng ;
Agrachev, Mikhail ;
Verstraeten, Simon ;
Willi, Patrik O. ;
Grass, Robert N. ;
Jeschke, Gunnar ;
Mitchell, Sharon ;
Lopez, Nuria ;
Perez-Ramirez, Javier .
ADVANCED ENERGY MATERIALS, 2023, 13 (14)
[2]   A review on the valorization of CO2. Focusing on the thermodynamics and catalyst design studies of the direct synthesis of dimethyl ether [J].
Ateka, A. ;
Rodriguez-Vega, P. ;
Erena, J. ;
Aguayo, A. T. ;
Bilbao, J. .
FUEL PROCESSING TECHNOLOGY, 2022, 233
[3]   A comparative thermodynamic study on the CO2 conversion in the synthesis of methanol and of DME [J].
Ateka, Ainara ;
Perez-Uriarte, Paula ;
Gamero, Monica ;
Erena, Javier ;
Aguayo, Andres T. ;
Bilbao, Javier .
ENERGY, 2017, 120 :796-804
[4]   Highly Efficient Carbon Dioxide Hydrogenation to Methanol Catalyzed by Zigzag Platinum-Cobalt Nanowires [J].
Bai, Shuxing ;
Shao, Qi ;
Feng, Yonggang ;
Bu, Lingzheng ;
Huang, Xiaoqing .
SMALL, 2017, 13 (22)
[5]   Competition between reverse water gas shift reaction and methanol synthesis from CO2: influence of copper particle size [J].
Barberis, Laura ;
Hakimioun, Amir H. ;
Plessow, Philipp N. ;
Visser, Nienke L. ;
Stewart, Joseph A. ;
Vandegehuchte, Bart D. ;
Studt, Felix ;
de Jongh, Petra E. .
NANOSCALE, 2022, 14 (37) :13551-13560
[6]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[7]   The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol [J].
Bonura, G. ;
Cordaro, M. ;
Cannilla, C. ;
Arena, F. ;
Frusteri, F. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 :152-161
[8]   Insight into the Role of Cu-ZrO2 Interaction in Methanol Synthesis from CO2 Hydrogenation [J].
Chang, Xiao ;
Han, Xiaoyu ;
Pan, Yutong ;
Hao, Ziwen ;
Chen, Jiyi ;
Li, Maoshuai ;
Lv, Jing ;
Ma, Xinbin .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (20) :6872-6883
[9]   Alcohol Solvent Assisted Synthesis of Metallic and Metal Oxide Catalysts: As-Prepared Cu/ZnO/Al2O3 Catalysts for Low-Temperature Methanol Synthesis with an Ultrahigh Yield [J].
Chen, Fei ;
Liang, Jiaming ;
Wang, Fan ;
Gao, Weizhe ;
Kugue, Yasuharu ;
He, Yingluo ;
Guo, Xiaoyu ;
Yang, Guohui ;
Liu, Guangbo ;
Wu, Jinhu ;
Reubroycharoen, Prasert ;
Vitidsant, Tharapong ;
Tsubaki, Noritatsu .
ACS CATALYSIS, 2023, 13 (09) :6169-6184
[10]   Structure-Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2 [J].
Chen, Fei ;
Zhang, Peipei ;
Xiao, Liwei ;
Liang, Jiaming ;
Zhang, Baizhang ;
Zhao, Heng ;
Kosol, Rungtiwa ;
Ma, Qingxiang ;
Chen, Jienan ;
Peng, Xiaobo ;
Yang, Guohui ;
Tsubaki, Noritatsu .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) :8191-8205