Non-Hermitian Topological Phononic Metamaterials

被引:20
作者
Lu, Jiuyang [1 ,2 ]
Deng, Weiyin [1 ,2 ]
Huang, Xueqin [3 ]
Ke, Manzhu [1 ,2 ]
Liu, Zhengyou [1 ,2 ,4 ]
机构
[1] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Guangdong, Peoples R China
[4] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
exceptional point; non-Hermitian; phononic metamaterials; skin effect; topological state; EXCEPTIONAL POINTS; INSULATOR; SYMMETRY; REALIZATION; DEGENERACY; CRYSTALS; REALITY; WAVE;
D O I
10.1002/adma.202307998
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-Hermitian (NH) physics describes novel phenomena in open systems that allow generally complex spectra. Introducing NH physics into topological metamaterials, which permits explorations of topological wave phenomena in artificially designed structures, not only enables the experimental verification of exotic NH phenomena in these flexible platforms, but also enriches the manipulation of wave propagation beyond the Hermitian cases. Here, a perspective on the advances in the research of NH topological phononic metamaterials is presented, which covers the exceptional points and their topological geometries, the skin effect related to the topology of complex spectra, the interplay of NH effects and topological states in phononic metamaterials, etc.
引用
收藏
页数:18
相关论文
共 204 条
[1]  
Asboth J.K., 2016, A Short Course on Topological Insulators, V919
[2]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[3]   PT-Symmetric Scattering in Flow Duct Acoustics [J].
Auregan, Yves ;
Pagneux, Vincent .
PHYSICAL REVIEW LETTERS, 2017, 118 (17)
[4]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   Exceptional topology of non-Hermitian systems [J].
Bergholtz, Emil J. ;
Budich, Jan Carl ;
Kunst, Flore K. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
[7]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[8]   Non-Hermitian skin effect of dislocations and its topological origin [J].
Bhargava, Balaganchi A. ;
Fulga, Ion Cosma ;
van den Brink, Jeroen ;
Moghaddam, Ali G. .
PHYSICAL REVIEW B, 2021, 104 (24)
[9]   Non-Hermitian Boundary Modes and Topology [J].
Borgnia, Dan S. ;
Kruchkov, Alex Jura ;
Slager, Robert-Jan .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)
[10]   Non-Hermitian elastic waveguides with piezoelectric feedback actuation: non-reciprocal bands and skin modes [J].
Braghini, Danilo ;
Villani, Luis G. G. ;
Rosa, Matheus I. N. ;
Arruda, Jose R. de F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (28)