The prevalence and topography of spinal cord demyelination in multiple sclerosis: a retrospective study

被引:6
作者
Waldman, Alex D. [1 ,5 ,6 ]
Catania, Cecilia [1 ]
Pisa, Marco [1 ]
Jenkinson, Mark [2 ,3 ,4 ]
Lenardo, Michael J. [5 ,6 ]
DeLuca, Gabriele C. [1 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Neurosci, Levl 1,West Wing, Oxford OX3 9DU, England
[2] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Neurosci, Oxford Ctr Funct MRI Brain,Wellcome Ctr Integrat N, Oxford OX3 9DU, England
[3] Univ Adelaide, AIML, Sch Comp & Math Sci, Adelaide, Australia
[4] SAHMRI, Adelaide, SA, Australia
[5] NIAID, Mol Dev Immune Syst Sect, Lab Immune Syst Biol, NIH, Bethesda, MD USA
[6] NIAID, Clin Genom Program, NIH, Bethesda, MD USA
基金
英国惠康基金;
关键词
Multiple sclerosis; Neuropathology; Spinal cord; Demyelination; Topography; Inflammatory activity; CERVICAL CORD; LESIONS; PATHOLOGY; NEURODEGENERATION; DISABILITY; DIAGNOSIS;
D O I
10.1007/s00401-024-02700-6
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Spinal cord pathology is a major determinant of irreversible disability in progressive multiple sclerosis. The demyelinated lesion is a cardinal feature. The well-characterised anatomy of the spinal cord and new analytic approaches allows the systematic study of lesion topography and its extent of inflammatory activity unveiling new insights into disease pathogenesis. We studied cervical, thoracic, and lumbar spinal cord tissue from 119 pathologically confirmed multiple sclerosis cases. Immunohistochemistry was used to detect demyelination (PLP) and classify lesional inflammatory activity (CD68). Prevalence and distribution of demyelination, staged by lesion activity, was determined and topographical maps were created to identify patterns of lesion prevalence and distribution using mixed models and permutation-based voxelwise analysis. 460 lesions were observed throughout the spinal cord with 76.5% of cases demonstrating at least 1 lesion. The cervical level was preferentially affected by lesions. 58.3% of lesions were inflammatory with 87.9% of cases harbouring at least 1 inflammatory lesion. Topographically, lesions consistently affected the dorsal and lateral columns with relative sparing of subpial areas in a distribution mirroring the vascular network. The presence of spinal cord lesions and the proportion of active lesions related strongly with clinical disease milestones, including time from onset to wheelchair and onset to death. We demonstrate that spinal cord demyelination is common, highly inflammatory, has a predilection for the cervical level, and relates to clinical disability. The topography of lesions in the dorsal and lateral columns and relative sparing of subpial areas points to a role of the vasculature in lesion pathogenesis, suggesting short-range cell infiltration from the blood and signaling molecules circulating in the perivascular space incite lesion development. These findings challenge the notion that end-stage progressive multiple sclerosis is 'burnt out' and an outside-in lesional gradient predominates in the spinal cord. Taken together, this study provides support for long-term targeting of inflammatory demyelination in the spinal cord and nominates vascular dysfunction as a potential target for new therapeutic approaches to limit irreversible disability.
引用
收藏
页数:14
相关论文
共 45 条
[1]   Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo [J].
Absinta, Martina ;
Sati, Pascal ;
Masuzzo, Federica ;
Nair, Govind ;
Sethi, Varun ;
Kolb, Hadar ;
Ohayon, Joan ;
Wu, Tianxia ;
Cortese, Irene C. M. ;
Reich, Daniel S. .
JAMA NEUROLOGY, 2019, 76 (12) :1474-1483
[2]   PERIVENTRICULAR LESIONS IN MULTIPLE-SCLEROSIS - THEIR PERIVENOUS ORIGIN AND RELATIONSHIP TO ANTIGRANULOCYTES EPENDYMITIS [J].
ADAMS, CWM ;
ABDULLA, YH ;
TORRES, EM ;
POSTON, RN .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1987, 13 (02) :141-152
[3]  
[Anonymous], 2010, Modern Applied Statistics With S
[4]  
[Anonymous], 2006, Mult. Scler., DOI [10.1016/b978-0-443-07271-0.50006-9, DOI 10.1016/B978-0-443-07271-0.50006-9]
[5]   Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor [J].
Arrambide, Georgina ;
Rovira, Alex ;
Sastre-Garriga, Jaume ;
Tur, Carmen ;
Castillo, Joaquin ;
Rio, Jordi ;
Vidal-Jordana, Angela ;
Galan, Ingrid ;
Rodriguez-Acevedo, Breogan ;
Midaglia, Luciana ;
Nos, Carlos ;
Mulero, Patricia ;
Jesus Arevalo, Maria ;
Comabella, Manuel ;
Huerga, Elena ;
Auger, Cristina ;
Montalban, Xavier ;
Tintore, Mar .
MULTIPLE SCLEROSIS JOURNAL, 2018, 24 (03) :301-312
[6]   The Blood-Spinal Cord Barrier: Morphology and Clinical Implications [J].
Bartanusz, Viktor ;
Jezova, Daniela ;
Alajajian, Betty ;
Digicaylioglu, Murat .
ANNALS OF NEUROLOGY, 2011, 70 (02) :194-206
[7]   The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow [J].
Blinder, Pablo ;
Tsai, Philbert S. ;
Kaufhold, John P. ;
Knutsen, Per M. ;
Suhl, Harry ;
Kleinfeld, David .
NATURE NEUROSCIENCE, 2013, 16 (07) :889-U150
[8]   Subpial demyelination in the cerebral cortex of multiple sclerosis patients [J].
Bo, L ;
Vedeler, CA ;
Nyland, HI ;
Trapp, BD ;
Mork, SJ .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2003, 62 (07) :723-732
[9]   Spinal cord abnormalities in recently diagnosed MS patients [J].
Bot, JCJ ;
Barkhof, F ;
Polman, CH ;
Nijeholt, GJLA ;
de Groot, V ;
Bergers, E ;
Ader, HJ ;
Castelijns, JA .
NEUROLOGY, 2004, 62 (02) :226-233
[10]   Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome [J].
Brownlee, W. J. ;
Altmann, D. R. ;
Da Mota, P. Alves ;
Swanton, J. K. ;
Miszkiel, K. A. ;
Wheeler-Kingshott, C. A. M. Gandini ;
Ciccarelli, O. ;
Miller, D. H. .
MULTIPLE SCLEROSIS JOURNAL, 2017, 23 (05) :665-674