Multifunctional conductive hydrogels for wearable sensors and supercapacitors

被引:34
|
作者
Li, Quancai [1 ]
Tian, Bin [1 ]
Tang, Guilin [1 ]
Zhan, Haoye [1 ]
Liang, Jing [1 ]
Guo, Panwang [1 ]
Liu, Qun [1 ]
Wu, Wei [1 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Lab Printable Funct Mat & Printed Elect, Wuhan 430072, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
PRESSURE SENSORS; STRAIN; DESIGN;
D O I
10.1039/d3ta06771h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conductive hydrogels have attracted extensive attention in the field of flexible electronics due to their excellent biocompatibility, suitable Young's modulus, and outstanding electrical conductivity. However, the inherent water-rich feature and insufficient interfacial adhesion of hydrogels hinder the stability and reliability of hydrogel-based devices for applications in complex environments. Herein, we design a novel polyacrylamide/polydopamine hydrogel using deep eutectic solvent (DES) and alkaline solution as the polymerization medium, and the as-obtained hydrogel has both self-adhesive (20.20 kPa for tissue) and anti-freezing properties (-20 degrees C). The combination of DES and alkaline solution replaces pure DES, which provides the conditions for oxidative polymerization of dopamine to ensure the adhesion performance of the hydrogel and also makes the hydrogel retain the conductivity and low melting point characteristics of DES. Furthermore, biocompatible carboxylated cellulose nanofibers (CCNFs) are embedded into the hydrogel to further enhance the mechanical properties by about 3 times through non-covalent interactions, physical entanglement and friction between CCNFs and the polymer. Remarkably, the hydrogel can be adhered to the skin as a bioelectrode for electrocardiography and can be used as a strain sensor to monitor human movements even after storing for 15 days at -20 degrees C. Meanwhile, the electrochemical characterization of supercapacitors using this hydrogel as an electrolyte shows great application potential. Conductive hydrogels, which combine the adhesive properties of polydopamine with the conductivity and low melting point features of deep eutectic solvents, are ideal green materials for bioelectrodes, flexible sensors, and supercapacitors.
引用
收藏
页码:3589 / 3600
页数:12
相关论文
共 50 条
  • [1] Neuron-inspired multifunctional conductive hydrogels for flexible wearable sensors
    Zhang, Lu
    Wang, Jing
    Wang, Shiwen
    Wang, Lili
    Wu, Minghua
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (11) : 4327 - 4335
  • [2] Multifunctional starch-based conductive hydrogels for smart sensors and flexible supercapacitors
    Ma, Jie
    Zhu, Jiading
    Zhou, Shixiang
    Zhao, Cheng
    Liu, Cong
    Xin, Zhe
    Cai, Jiantao
    He, Jian
    Feng, Peizhong
    Guo, Litong
    Tao, Xueyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 302
  • [3] Conductive nanocomposite hydrogels for flexible wearable sensors
    Guo, Wen-Yan
    Ma, Ming-Guo
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (16) : 9371 - 9399
  • [4] Hierarchically Structured Stretchable Conductive Hydrogels for High-Performance Wearable Strain Sensors and Supercapacitors
    Zhao, Yusen
    Zhang, Bozhen
    Yao, Bowen
    Qiu, Yu
    Peng, Zihang
    Zhang, Yucheng
    Alsaid, Yousif
    Frenkel, Imri
    Youssef, Kareem
    Pei, Qibing
    He, Ximin
    MATTER, 2020, 3 (04) : 1196 - 1210
  • [5] Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors
    Yin, Hongyan
    Liu, Fangfei
    Abdiryim, Tursun
    Chen, Jiaying
    Liu, Xiong
    CARBOHYDRATE POLYMERS, 2024, 327
  • [6] Multifunctional conductive hydrogels and their applications as smart wearable devices
    Chen, Zhen
    Chen, Yujie
    Hedenqvist, Mikael S.
    Chen, Chi
    Cai, Chao
    Li, Hua
    Liu, Hezhou
    Fu, Jun
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (11) : 2561 - 2583
  • [7] Nanocellulose-mediated conductive hydrogels with NIR photoresponse and fatigue resistance for multifunctional wearable sensors
    Sang, Chenyu
    Wang, Shaowei
    Jin, Xiaoyue
    Cheng, Xiaoyu
    Xiao, Huining
    Yue, Yiying
    Han, Jingquan
    CARBOHYDRATE POLYMERS, 2024, 333
  • [8] Soft Stretchable Conductive Carboxymethylcellulose Hydrogels for Wearable Sensors
    Park, Kyuha
    Choi, Heewon
    Kang, Kyumin
    Shin, Mikyung
    Son, Donghee
    GELS, 2022, 8 (02)
  • [9] Flexible and wearable strain sensors based on conductive hydrogels
    Zhang, Jiawei
    Zhang, Qin
    Liu, Xin
    Xia, Shan
    Gao, Yang
    Gao, Guanghui
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (18) : 2663 - 2678
  • [10] Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors
    Cao, Juan
    Wu, Bo
    Yuan, Ping
    Liu, Yeqi
    Hu, Cheng
    GELS, 2024, 10 (02)