Tomiyama's K-commutative diagrams of minimal dynamical systems

被引:0
作者
Wei, Sihan [1 ]
机构
[1] East China Normal Univ, Res Ctr Operator Algebras, Sch Math & Sci, Shanghai, Peoples R China
关键词
Classifications of dynamical systems; K-theory; approximate conjugacies; C-ASTERISK-ALGEBRAS; CANTOR SET; CROSSED-PRODUCTS; FULL GROUPS; LIMITS; RANK;
D O I
10.1142/S1793525323500498
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the Cantor space and S-2n be an even-dimensional sphere. By applying a result of the existence of minimal skew products, we show that, associated with any Cantor minimal system (K ,alpha), there is a class Script capital R-0((alpha) over tilde) of minimal skew products on K x S-2n, such that for any two rigid homeomorphisms alpha is an element of R-0(alpha) and beta is an element of R-0((beta) over tilde), the notions of approximate K-conjugacy and C*-strongly approximate conjugacy coincide, which are also equivalent to a K-version of Tomiyama's commutative diagram. In fact, this is also the case if S-2n is replaced by any (infinite) connected finite CW-complex with torsion free K-0-group, vanished K-1-group and the so-called Lipschitz-minimal-property.
引用
收藏
页数:28
相关论文
共 34 条
  • [1] [Anonymous], 2012, Geometric integration theory
  • [2] REDUCTION OF REAL RANK IN INDUCTIVE LIMITS OF C-ALGEBRAS
    BLACKADAR, B
    BRATTELI, O
    ELLIOTT, GA
    KUMJIAN, A
    [J]. MATHEMATISCHE ANNALEN, 1992, 292 (01) : 111 - 126
  • [3] Elek G, 2013, P AM MATH SOC, V141, P3549
  • [4] THE C*-ALGEBRA OF A MINIMAL HOMEOMORPHISM OF ZERO MEAN DIMENSION
    Elliott, George A.
    Niu, Zhuang
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (18) : 3569 - 3594
  • [5] Fathi A, 1977, ASTERISQUE, p[49, 37]
  • [6] Friedl S, 2024, Arxiv, DOI arXiv:1910.07372
  • [7] Orbit equivalence of Cantor minimal systems and their continuous spectra
    Giordano, T.
    Handelman, D.
    Hosseini, M.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (3-4) : 1199 - 1218
  • [8] Giordano T, 1995, J REINE ANGEW MATH, V469, P51
  • [9] The orbit structure of cantor minimal Z2-systems
    Giordano, Thierry
    Putnam, Ian F.
    Skau, Christian F.
    [J]. OPERATOR ALGEBRAS, 2006, 1 : 145 - +
  • [10] Orbit equivalence for Cantor minimal a"currency sign d -systems
    Giordano, Thierry
    Matui, Hiroki
    Putnam, Ian F.
    Skau, Christian F.
    [J]. INVENTIONES MATHEMATICAE, 2010, 179 (01) : 119 - 158