Early Warning System for Monitoring of Cancer Patients Using Hybrid Interactive Machine Learning

被引:0
作者
Trojan, A. [1 ]
Kiessling, M. [2 ]
Mannhart, M. [3 ]
Jackisch, C. [4 ]
Witschel, H. -F. [5 ]
机构
[1] BrustZentrum Zurichsee, Horgen, Switzerland
[2] Seespital, Oncol, Horgen, Switzerland
[3] OHZ Onko Hamatol Zentrum Zug, Oncol, Cham, Switzerland
[4] Sana Klinikum Offenbach, Senol, Offenbach, Germany
[5] Univ Appl Sci & Arts Northwestern Switzerland, Mashine Learning, Olten, Switzerland
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
197
引用
收藏
页码:58S / 58S
页数:1
相关论文
共 50 条
[41]   Cancer early warning system [J].
Morgan, N .
CHEMISTRY IN BRITAIN, 2000, 36 (08) :19-19
[42]   Using Machine Learning to Detect Cancer Early [J].
Schellenberger, Jan .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3604-3604
[43]   Monitoring System for Sickle Cell Disease Patients by Using Supervised Machine Learning [J].
Hamed, Abd Dhafar ;
Al-Mejibli, Intisar Shadeed .
2017 SECOND AL-SADIQ INTERNATIONAL CONFERENCE ON MULTIDISCIPLINARY IN IT AND COMMUNICATION SCIENCE AND APPLICATIONS (AIC-MITCSA), 2017, :119-124
[44]   The Monitoring and Early-warning System of Students' learning Based on the Campus Cloud [J].
Zhang FuSheng ;
Yang Ling ;
Jia ZongFu ;
Qi XinJun ;
Zong Mingkui .
2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND EDUCATION (ICCSE 2017), 2017, :587-590
[45]   A hybrid machine learning approach for congestion prediction and warning [J].
Li, Dongxue ;
Hu, Yao ;
Wu, Chuliang ;
Chen, Wangyong ;
Wang, Feiyun .
TRANSPORTATION PLANNING AND TECHNOLOGY, 2025, 48 (02) :387-411
[46]   Constructing an early warning model for elderly sepsis patients based on machine learning [J].
Ma, Xuejie ;
Mai, Yaoqiong ;
Ma, Yin ;
Ma, Xiaowei .
SCIENTIFIC REPORTS, 2025, 15 (01)
[47]   Anomaly Detection in Biological Early Warning Systems Using Unsupervised Machine Learning [J].
Grekov, Aleksandr N. ;
Kabanov, Aleksey A. ;
Vyshkvarkova, Elena V. ;
Trusevich, Valeriy V. .
SENSORS, 2023, 23 (05)
[48]   Dropout early warning systems for high school students using machine learning [J].
Chung, Jae Young ;
Lee, Sunbok .
CHILDREN AND YOUTH SERVICES REVIEW, 2019, 96 :346-353
[49]   Early Warning of mmWave Signal Blockage Using Diffraction Properties and Machine Learning [J].
Fallah Dizche, Amirhassan ;
Duel-Hallen, Alexandra ;
Hallen, Hans .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (12) :2944-2948
[50]   Early warning signs: targeting neonatal and infant mortality using machine learning [J].
Brahma, Dweepobotee ;
Mukherjee, Debasri .
APPLIED ECONOMICS, 2022, 54 (01) :57-74