Intrusion detection in big data environment using hybrid deep learning algorithm (VAE-CNN)

被引:0
|
作者
Gokila, R. G. [1 ]
Kannan, S. [2 ]
机构
[1] EGS Pillay Engn Coll, Dept Informat Technol, Nagapattinam, India
[2] Kings Coll Engn, Dept Elect & Commun Engn, Pudukkottai, India
关键词
Big data; intrusions; denial of service; intrusion detection system; deep learning; auto encoder; convolutional neural network; NETWORK; IOT; FUZZY;
D O I
10.3233/JIFS-234311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the internet era, billions of devices are connected to the network generates large volume of data and the generation rate increases exponentially every day. As the data increases, the chances for cyber attackers to exploit the data increases which results into numerous security threats to organizations and network. Fast and accurate detection of attacks in big data environment is difficult due to its volume and variety and velocity. Over a decade, numerous attack detection systems are developed using machine learning. However, most of the traditional detection systems cannot recognize the attack types specifically which reduces the detection performances and network performances. Thus, the intrusion detection model presented in this research which incorporates deep variational auto-encoder and convolutional neural network to detect intrusions. Experimentations using benchmark dataset validated the proposed model better performances over existing machine learning techniques like logistic regression, random forest, extreme gradient boosting, k-nearest neighbor, and selfscalable heuristic artificial neural network algorithms using accuracy, recall, precision, and F1-score. The proposed model outperforms with a maximum precision of 97.48%, Recall of 99.52%, F1-score of 98.49% and accuracy of 98.65% over conventional intrusion detection algorithms.
引用
收藏
页码:8637 / 8649
页数:13
相关论文
共 50 条
  • [41] An Effective Deep Learning-Based Intrusion Detection System for the Healthcare Environment
    Balaji, K.
    Kumar, S. Satheesh
    Vivek, D.
    Deepak, S. Prem Kumar
    Sagar, K. V. Daya
    Khan, S. Thabassum
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2025, 24 (01)
  • [42] Hybrid Whale Tabu algorithm optimized convolutional neural network architecture for intrusion detection in big data
    Ponmalar, A.
    Dhanakoti, V.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (19)
  • [43] Deep Learning for Intrusion Detection Systems (IDSs) in Time Series Data
    Psychogyios, Konstantinos
    Papadakis, Andreas
    Bourou, Stavroula
    Nikolaou, Nikolaos
    Maniatis, Apostolos
    Zahariadis, Theodore
    FUTURE INTERNET, 2024, 16 (03)
  • [44] Attack classification of an intrusion detection system using deep learning and
    Novaria Kunang, Yesi
    Nurmaini, Siti
    Stiawan, Deris
    Suprapto, Bhakti Yudho
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 58
  • [45] Anomaly Detection in Renewable Energy Big Data Using Deep Learning
    Katamoura, Suzan MohammadAli
    Aksoy, Mehmet Sabih
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2023, 19 (01)
  • [46] Enhancing Intrusion Detection Systems Using a Deep Learning and Data Augmentation Approach
    Mohammad, Rasheed
    Saeed, Faisal
    Almazroi, Abdulwahab Ali
    Alsubaei, Faisal S.
    Almazroi, Abdulaleem Ali
    SYSTEMS, 2024, 12 (03):
  • [47] Comparative Study of CNN and RNN for Deep Learning Based Intrusion Detection System
    Cui, Jianjing
    Long, Jun
    Min, Erxue
    Liu, Qiang
    Li, Qian
    CLOUD COMPUTING AND SECURITY, PT V, 2018, 11067 : 159 - 170
  • [48] Deep Ensemble Technique for Cyber Attack Detection in Big Data Environment
    Babu, D. Raghunath Kumar
    Packialatha, A.
    CYBERNETICS AND SYSTEMS, 2023, 54 (08) : 1320 - 1347
  • [49] Cyber Intrusion Prediction and Taxonomy System Using Deep Learning And Distributed Big Data Processing
    Al Najada, Hamzah
    Mahgoub, Imad
    Mohammed, Imran
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 631 - 638
  • [50] An Effective In-Vehicle CAN Bus Intrusion Detection System Using CNN Deep Learning Approach
    Hossain, Md Delwar
    Inoue, Hiroyuki
    Ochiai, Hideya
    Fall, Doudou
    Kadobayashi, Youki
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,