Statistical Considerations for Analyzing Data Derived from Long Longitudinal Cohort Studies

被引:0
|
作者
Fernandez-Iglesias, Rocio [1 ,2 ,3 ]
Martinez-Camblor, Pablo [4 ,5 ]
Tardon, Adonina [1 ,2 ,3 ]
Fernandez-Somoano, Ana [1 ,2 ,3 ]
机构
[1] Spanish Consortium Res Epidemiol & Publ Hlth CIBER, Monforte de Lemos Ave 3-5, Madrid 28029, Spain
[2] Univ Oviedo, Univ Inst Oncol Principal Asturias IUOPA, Dept Med, Julian Claveria St S-N, Oviedo 33006, Asturias, Spain
[3] Inst Invest Sanitaria Principado Asturias ISPA, Roma Ave S-N, Oviedo 33001, Asturias, Spain
[4] Geisel Sch Med Dartmouth, Biomed Data Sci Dept, Lebanon, NH 03756 USA
[5] Univ Autonoma Chile, Fac Hlth Sci, Providencia 7500912, Chile
关键词
missing data; quantile regression; tracking; cohort studies; children's health; cardiovascular risk; QUANTILE REGRESSION; MISSING DATA; MULTIPLE IMPUTATION; BLOOD-PRESSURE; CHILDHOOD; TRACKING; AGE; VARIABLES; EXPOSURE; CHILDREN;
D O I
10.3390/math11194070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Modern science is frequently based on the exploitation of large volumes of information storage in datasets and involving complex computational architectures. The statistical analyses of these datasets have to cope with specific challenges and frequently involve making informed but arbitrary decisions. Epidemiological papers have to be concise and focused on the underlying clinical or epidemiological results, not reporting the details behind relevant methodological decisions. In this work, we used an analysis of the cardiovascular-related measures tracked in 4-8-year-old children, using data from the INMA-Asturias cohort for illustrating how the decision-making process was performed and its potential impact on the obtained results. We focused on two particular aspects of the problem: how to deal with missing data and which regression model to use to evaluate tracking when there are no defined thresholds to categorize variables into risk groups. As a spoiler, we analyzed the impact on our results of using multiple imputation and the advantage of using quantile regression models in this context.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Analyzing longitudinal binary data in clinical studies
    Li, Yihan
    Feng, Dai
    Sui, Yunxia
    Li, Hong
    Song, Yanna
    Zhan, Tianyu
    Cicconetti, Greg
    Jin, Man
    Wang, Hongwei
    Chan, Ivan
    Wang, Xin
    CONTEMPORARY CLINICAL TRIALS, 2022, 115
  • [2] Comparison of statistical approaches for analyzing incomplete longitudinal patient-reported outcome data in randomized controlled trials
    Rombach, Ines
    Jenkinson, Crispin
    Gray, Alastair M.
    Murray, David W.
    Rivero-Arias, Oliver
    PATIENT-RELATED OUTCOME MEASURES, 2018, 9 : 197 - 209
  • [3] Estimating longitudinal depressive symptoms from smartphone data in a transdiagnostic cohort
    Pellegrini, Amelia M.
    Huang, Emily J.
    Staples, Patrick C.
    Hart, Kamber L.
    Lorme, Jeanette M.
    Brown, Hannah E.
    Perlis, Roy H.
    Onnela, Jukka-Pekka J.
    BRAIN AND BEHAVIOR, 2022, 12 (02):
  • [4] Methodological and Statistical Considerations for Cross-Sectional, Case-Control, and Cohort Studies
    Perez-Guerrero, Edsaul Emilio
    Guillen-Medina, Miryam Rosario
    Marquez-Sandoval, Fabiola
    Vera-Cruz, Jose Maria
    Gallegos-Arreola, Martha Patricia
    Rico-Mendez, Manuel Alejandro
    Aguilar-Velazquez, Jose Alonso
    Gutierrez-Hurtado, Itzae Adonai
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (14)
  • [5] Socioeconomic position and overweight among adolescents: data from birth cohort studies in Brazil and the UK
    Matijasevich, Alicia
    Victora, Cesar G.
    Golding, Jean
    Barros, Fernando C.
    Menezes, Ana Maria
    Araujo, Cora L.
    Smith, George Davey
    BMC PUBLIC HEALTH, 2009, 9
  • [6] Change in physical activity from adolescence to early adulthood: a systematic review and meta-analysis of longitudinal cohort studies
    Corder, Kirsten
    Winpenny, Eleanor
    Love, Rebecca
    Brown, Helen Elizabeth
    White, Martin
    van Sluijs, Esther
    BRITISH JOURNAL OF SPORTS MEDICINE, 2019, 53 (08) : 496 - +
  • [7] Toxicokinetic Modeling of Persistent Organic Pollutant Levels in Blood from Birth to 45 Months of Age in Longitudinal Birth Cohort Studies
    Verner, Marc-Andre
    Sonneborn, Dean
    Lancz, Kinga
    Muckle, Gina
    Ayotte, Pierre
    Dewailly, Eric
    Kocan, Anton
    Palkovicova, Lubica
    Trnovec, Tomas
    Haddad, Sami
    Hertz-Picciotto, Irva
    Eggesbo, Merete
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2013, 121 (01) : 131 - 137
  • [8] Life course trajectories of alcohol consumption in the United Kingdom using longitudinal data from nine cohort studies
    Britton, Annie
    Ben-Shlomo, Yoav
    Benzeval, Michaela
    Kuh, Diana
    Bell, Steven
    BMC MEDICINE, 2015, 13
  • [9] STATISTICAL ANALYSIS OF DATA FROM THE "SCORE AND RANK" PROCEDURE IN PREFERENCE STUDIES WITH CHILDREN
    Vigneau, E.
    Dulon, L.
    Texier, F.
    JOURNAL OF SENSORY STUDIES, 2012, 27 (03) : 196 - 207
  • [10] Lessons from long-term cohort studies
    Wright, AL
    Taussig, LM
    EUROPEAN RESPIRATORY JOURNAL, 1998, 12 : 17S - 22S