Robustness of microbiome function

被引:7
作者
Lee, Kiseok Keith [1 ]
Park, Yeonwoo [3 ]
Kuehn, Seppe [1 ,2 ]
机构
[1] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
[2] Univ Chicago, Ctr Phys Evolving Syst, Chicago, IL 60637 USA
[3] Inst for Basic Sci Korea, Ctr RNA Res, Seoul 08826, South Korea
基金
美国国家科学基金会;
关键词
Robustness; Adaptive landscape; Evolvability; Microbiome; Ecosystem function; Neutral space; Functional redundancy; Environmental perturbation; BACTERIAL COMMUNITIES; EVOLVABILITY; INSURANCE; EVOLUTION; BIODIVERSITY; MODULARITY; NETWORKS; PRODUCTIVITY; SELECTION; MECHANISM;
D O I
10.1016/j.coisb.2023.100479
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial communities perform metabolic processes that sustain life on Earth and promote human health. Microbial consortia sustain these functions in the face of constant structural and environmental perturbations. How do complex communities robustly sustain their functional properties despite perturbations? Most studies of functional robustness in the microbiome have been limited to biodiversity and functional redundancy, the idea that there are multiple members of the community that can sustain a specific function. Here, we propose that ideas from other complex biological systems may be applied to deepen our understanding of microbiome robustness. By surveying the causes of functional robustness in a variety of biological systems, including proteins and cells, and discussing how they can be applied to the microbiome, we build conceptual and experimental frameworks for understanding the functional robustness of microbial communities. We hope that these insights might help better predict and engineer microbiome function.
引用
收藏
页数:10
相关论文
共 89 条
[72]   Modelling ecological communities when composition is manipulated experimentally [J].
Skwara, Abigail ;
Lemos-Costa, Paula ;
Miller, Zachary R. R. ;
Allesina, Stefano .
METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (02) :696-707
[73]   Evolution under Fluctuating Environments Explains Observed Robustness in Metabolic Networks [J].
Soyer, Orkun S. ;
Pfeiffer, Thomas .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (08)
[74]   Evolvability as a Function of Purifying Selection in TEM-1 β-Lactamase [J].
Stiffler, Michael A. ;
Hekstra, Doeke R. ;
Ranganathan, Rama .
CELL, 2015, 160 (05) :882-892
[75]   Conservation and evolvability in regulatory networks: The evolution of ribosomal regulation in yeast [J].
Tanay, A ;
Regev, A ;
Shamir, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (20) :7203-7208
[76]   Deciphering functional redundancy in the human microbiome [J].
Tian, Liang ;
Wang, Xu-Wen ;
Wu, Ang-Kun ;
Fan, Yuhang ;
Friedman, Jonathan ;
Dahlin, Amber ;
Waldor, Matthew K. ;
Weinstock, George M. ;
Weiss, Scott T. ;
Liu, Yang-Yu .
NATURE COMMUNICATIONS, 2020, 11 (01)
[77]   Evolution of ribosomal protein network architectures [J].
Timsit, Youri ;
Sergeant-Perthuis, Gregoire ;
Bennequin, Daniel .
SCIENTIFIC REPORTS, 2021, 11 (01)
[78]   Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression [J].
van der voort, Menno ;
Kempenaar, Marcel ;
van Driel, Marc ;
Raaijmakers, Jos M. ;
Mendes, Rodrigo .
ECOLOGY LETTERS, 2016, 19 (04) :375-382
[79]   Challenges & opportunities for phage-based in situ microbiome engineering in the gut [J].
Voorhees, Peter J. ;
Cruz-Teran, Carlos ;
Edelstein, Jasmine ;
Lai, Samuel K. .
JOURNAL OF CONTROLLED RELEASE, 2020, 326 :106-119
[80]   Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning [J].
Wagg, Cameron ;
Schlaeppi, Klaus ;
Banerjee, Samiran ;
Kuramae, Eiko E. ;
van der Heijden, Marcel G. A. .
NATURE COMMUNICATIONS, 2019, 10 (1)