On the reduced Bernstein-Sato polynomial of Thom-Sebastiani singularities

被引:0
作者
Dominguez, A. Castano [1 ]
Macarro, L. Narvaez [1 ,2 ]
机构
[1] Univ Seville, Dept Algebra, C Tarfia S-N, Seville 41012, Spain
[2] Univ Seville, Inst Matemat IMUS, C-Tarfia s-n, Seville 41012, Spain
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 03期
关键词
Bernstein-Sato polynomial; Functional equation; Thom-Sebastiani singularity; V-filtration;
D O I
10.1007/s13163-023-00478-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two holomorphic functions f and g defined in two respective germs of complex analytic manifolds (X, x) and (Y, y), we know thanks to M. Saito that, as long as one of them is Euler homogeneous, the reduced (or microlocal) Bernstein-Sato polynomial of the Thom-Sebastiani sum f + g can be expressed in terms of those of f and g. In this note we give a purely algebraic proof of a similar relation between the whole functional equations that can be applied to any setting (not necessarily analytic) in which Bernstein-Sato polynomials can be defined.
引用
收藏
页码:877 / 886
页数:10
相关论文
共 10 条
[1]  
Alvarez Montaner J., 2021, COMMUN CONTEMP MATH, V24, P1
[2]   Bernstein-Sato polynomials of arbitrary varieties [J].
Budur, Nero ;
Mustata, Mircea ;
Saito, Morihiko .
COMPOSITIO MATHEMATICA, 2006, 142 (03) :779-797
[3]   BERNSTEIN-SATO POLYNOMIALS AND FUNCTIONAL EQUATIONS [J].
Granger, Michel .
ALGEBRAIC APPROACH TO DIFFERENTIAL EQUATIONS, 2010, :225-291
[4]  
Malgrange Bernard., 1975, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, V459, P98
[5]  
MEBKHOUT Z, 1991, ANN SCI ECOLE NORM S, V24, P227
[6]   BERNSTEIN-SATO POLYNOMIALS FOR GENERAL IDEALS VS. PRINCIPAL IDEALS [J].
Mustata, Mircea .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) :3655-3662
[7]  
NarvaezMacarro L., 2014, 23 BRAZ ALG M JUL 27
[8]   On certain rings of differentiable type and finiteness properties of local cohomology [J].
Nunez-Betancourt, Luis .
JOURNAL OF ALGEBRA, 2013, 379 :1-10
[9]   ON MICROLOCAL B-FUNCTION [J].
SAITO, M .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (02) :163-184
[10]  
Yano T., 1978, MATH SCI, V14, P111