On the Topological Generation of Exceptional Groups by Unipotent Elements

被引:0
作者
Burness, Timothy C. [1 ]
机构
[1] Univ Bristol, T C Burness Sch Math, Bristol BS8 1UG, England
基金
瑞士国家科学基金会; 芬兰科学院;
关键词
CONJUGACY CLASSES; FINITE; SUBGROUPS; SIZES;
D O I
10.1007/s00031-023-09798-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple algebraic group of exceptional type over an algebraically closed field of characteristic p >= 0 which is not algebraic over a finite field. Let C1,..., Ct be non-central conjugacy classes in G. In earlier work with Gerhardt and Guralnick, we proved that if t >= 5 (or t >= 4 if G = G2), then there exist elements xi is an element of C-i such that < x1,..., xt > is Zariski dense in G. Moreover, this bound on t is best possible. Here we establish a more refined version of this result in the special case where p > 0 and the Ci are unipotent classes containing elements of order p. Indeed, in this setting we completely determine the classes C1,..., Ct for t >= 2 such that < x1,..., xt > is Zariski dense for some xi is an element of C-i
引用
收藏
页码:481 / 520
页数:40
相关论文
共 26 条
[1]  
ASCHBACHER M, 1976, NAGOYA MATH J, V63, P1
[2]  
Bourbaki N., 1968, Elements de Mathematique
[3]  
Burness T.C., 2021, ARXIV
[4]   The Classification of Extremely Primitive Groups [J].
Burness, Timothy C. ;
Thomas, Adam R. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (13) :10148-10248
[5]   Topological generation of exceptional algebraic groups [J].
Burness, Timothy C. ;
Gerhardt, Spencer ;
Guralnick, Robert M. .
ADVANCES IN MATHEMATICS, 2020, 369
[6]   On base sizes for algebraic groups [J].
Burness, Timothy C. ;
Guralnick, Robert M. ;
Saxl, Jan .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (08) :2269-2341
[7]  
Carter R.W., 1985, Finite Groups of Lie Type, Conjugacy Classes and Complex Characters
[8]   A NEW MAXIMAL SUBGROUP OF E8 IN CHARACTERISTIC 3 [J].
Craven, David A. ;
Stewart, David, I ;
Thomas, Adam R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) :1435-1448
[9]   REPRESENTATIONS OF REDUCTIVE GROUPS OVER FINITE-FIELDS [J].
DELIGNE, P ;
LUSZTIG, G .
ANNALS OF MATHEMATICS, 1976, 103 (01) :103-161
[10]   Computing Green functions in small characteristic [J].
Geck, Meinolf .
JOURNAL OF ALGEBRA, 2020, 561 :163-199