Random forest microplastic classification using spectral subsamples of FT-IR hyperspectral images

被引:7
|
作者
Valls-Conesa, Jordi [1 ,2 ]
Winterauer, Dominik J. J. [1 ]
Kroeger-Lui, Niels [1 ]
Roth, Sascha [1 ]
Liu, Fan [2 ]
Luettjohann, Stephan [1 ]
Harig, Roland [1 ]
Vollertsen, Jes [2 ]
机构
[1] Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
[2] Aalborg Univ, Dept Built Environm, Thomas Manns Vej 23, DK-9220 Aalborg, Denmark
关键词
IDENTIFICATION; HISTOPATHOLOGY; SYSTEM; CELLS;
D O I
10.1039/d3ay00514c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, a random decision forest model is built for fast identification of Fourier-transform infrared spectra of the eleven most common types of microplastics in the environment. The random decision forest input data is reduced to a combination of highly discriminative single wavenumbers selected using a machine learning classifier. This dimension reduction allows input from systems with individual wavenumber measurements, and decreases prediction time. The training and testing spectra are extracted from Fourier-transform infrared hyperspectral images of pure-type microplastic samples, automatizing the process with reference spectra and a fast background correction and identification algorithm. Random decision forest classification results are validated using procedurally generated ground truth. The classification accuracy achieved on said ground truths are not expected to carry over to environmental samples as those usually contain a broader variety of materials.
引用
收藏
页码:2226 / 2233
页数:8
相关论文
共 50 条
  • [41] SURFACE ANALYSIS USING FT-IR SPECTROSCOPY
    ISHIDA, H
    KOENIG, JL
    INTERNATIONAL LABORATORY, 1978, (MAY-): : 49 - &
  • [42] Analysis of liver using FT-IR microscopy
    Chiriboga, L
    Diem, M
    Yee, H
    FASEB JOURNAL, 2000, 14 (04): : A701 - A701
  • [43] CLASSIFICATION OF GREEN COFFEES BY FT-IR ANALYSIS OF DRY EXTRACT
    DUPUY, N
    HUVENNE, JP
    DUPONCHEL, L
    LEGRAND, P
    APPLIED SPECTROSCOPY, 1995, 49 (05) : 580 - 585
  • [44] Development of a machine-learning model for microplastic analysis in an FT-IR microscopy image
    Choi, Eunwoo
    Choi, Yejin
    Lee, Hyoyoung
    Kim, Jae-Woo
    Oh, Han Bin
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2024, 45 (05) : 472 - 481
  • [45] Step-scan FT-IR photoacoustic (S-2 FT-IR PA) spectral depth profiling of layered materials
    Palmer, RA
    Jiang, EY
    Chao, JL
    MIKROCHIMICA ACTA, 1997, : 591 - 594
  • [46] Classification of Green Coffees by FT-IR Analysis of Dry Extract
    Huvenne, Jean Pierre, 1600, SAGE Publications Inc. (49):
  • [47] Efficient classification of Escherichia coli and Shigella using FT-IR spectroscopy and multivariate analysis
    Feng, Bin
    Shen, Hao
    Yang, Fan
    Yan, Jintao
    Yang, Shouning
    Gan, Ning
    Shi, Haimei
    Yu, Shaoning
    Wang, Li
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 279
  • [48] Classification and identification of color photocopiers by FT-IR and GC/MS
    Mizrachi, N
    Aizenshtat, Z
    Levy, S
    Elkayam, R
    JOURNAL OF FORENSIC SCIENCES, 1998, 43 (02) : 353 - 361
  • [49] Rapid Classification and Differentiation of Sepsis-Related Pathogens Using FT-IR Spectroscopy
    Ahmed, Shwan
    Albahri, Jawaher
    Shams, Sahand
    Sosa-Portugal, Silvana
    Lima, Cassio
    Xu, Yun
    McGalliard, Rachel
    Jones, Trevor
    Parry, Christopher M.
    Timofte, Dorina
    Carrol, Enitan D.
    Muhamadali, Howbeer
    Goodacre, Royston
    MICROORGANISMS, 2024, 12 (07)
  • [50] Author Correction: Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data
    Paulina Koziol
    Magda K. Raczkowska
    Justyna Skibinska
    Sławka Urbaniak-Wasik
    Czesława Paluszkiewicz
    Wojciech Kwiatek
    Tomasz P. Wrobel
    Scientific Reports, 10