Synthetic seismocardiogram generation using a transformer-based neural network

被引:4
作者
Nikbakht, Mohammad [1 ,4 ]
Gazi, Asim H. [1 ]
Zia, Jonathan [1 ]
An, Sungtae [2 ]
Lin, David J. [1 ]
Inan, Omer T. [1 ]
Kamaleswaran, Rishikesan [3 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA USA
[2] Georgia Inst Technol, Dept Interact Comp, Atlanta, GA USA
[3] Emory Univ, Dept Biomed Informat, Sch Med, Atlanta, GA USA
[4] Georgia Inst Technol, Dept Elect & Comp Engn, North Ave, Atlanta, GA 30332 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
seismocardiogram; transformer neural networks; machine learning; cardiovascular; PREEJECTION PERIOD ESTIMATION;
D O I
10.1093/jamia/ocad067
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: To design and validate a novel deep generative model for seismocardiogram (SCG) dataset augmentation. SCG is a noninvasively acquired cardiomechanical signal used in a wide range of cardivascular monitoring tasks; however, these approaches are limited due to the scarcity of SCG data. Methods: A deep generative model based on transformer neural networks is proposed to enable SCG dataset augmentation with control over features such as aortic opening (AO), aortic closing (AC), and participant-specific morphology. We compared the generated SCG beats to real human beats using various distribution distance metrics, notably Sliced-Wasserstein Distance (SWD). The benefits of dataset augmentation using the proposed model for other machine learning tasks were also explored. Results: Experimental results showed smaller distribution distances for all metrics between the synthetically generated set of SCG and a test set of human SCG, compared to distances from an animal dataset (1.14x SWD), Gaussian noise (2.5x SWD), or other comparison sets of data. The input and output features also showed minimal error (95% limits of agreement for pre-ejection period [PEP] and left ventricular ejection time [LVET] timings are 0.03 +/- 3.81 ms and -0.28 +/- 6.08 ms, respectively). Experimental results for data augmentation for a PEP estimation task showed 3.3% accuracy improvement on an average for every 10% augmentation (ratio of synthetic data to real data). Conclusion: The model is thus able to generate physiologically diverse, realistic SCG signals with precise control over AO and AC features. This will uniquely enable dataset augmentation for SCG processing and machine learning to overcome data scarcity.
引用
收藏
页码:1266 / 1273
页数:8
相关论文
共 38 条
  • [1] Photoplethysmography and its application in clinical physiological measurement
    Allen, John
    [J]. PHYSIOLOGICAL MEASUREMENT, 2007, 28 (03) : R1 - R39
  • [2] AdaptNet: Human Activity Recognition via Bilateral Domain Adaptation Using Semi-Supervised Deep Translation Networks
    An, Sungtae
    Medda, Alessio
    Sawka, Michael N.
    Hutto, Clayton J.
    Millard-Stafford, Mindy L.
    Appling, Scott
    Richardson, Kristine L. S.
    Inan, Omer T.
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (18) : 20398 - 20411
  • [3] Ashouri H, 2018, IEEE SENS J, V18, P1665, DOI [10.1109/JSEN.2017.2787628, 10.1109/jsen.2017.2787628]
  • [4] Automatic Detection of Seismocardiogram Sensor Misplacement for Robust Pre-Ejection Period Estimation in Unsupervised Settings
    Ashouri, Hazar
    Inan, Omer T.
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (12) : 3805 - 3813
  • [5] Enabling Continuous Wearable Reflectance Pulse Oximetry at the Sternum
    Chan, Michael
    Ganti, Venu G.
    Heller, J. Alex
    Abdallah, Calvin A.
    Etemadi, Mozziyar
    Inan, Omer T.
    [J]. BIOSENSORS-BASEL, 2021, 11 (12):
  • [6] Delaney AM, 2019, ARXIV
  • [7] Enabling Wearable Pulse Transit Time-Based Blood Pressure Estimation for Medically Underserved Areas and Health Equity: Comprehensive Evaluation Study
    Ganti, Venu
    Carek, Andrew M.
    Jung, Hewon
    Srivatsa, Adith, V
    Cherry, Deborah
    Johnson, Levather Neicey
    Inan, Omer T.
    [J]. JMIR MHEALTH AND UHEALTH, 2021, 9 (08):
  • [8] Wearable Seismocardiography-Based Assessment of Stroke Volume in Congenital Heart Disease
    Ganti, Venu G.
    Gazi, Asim H.
    An, Sungtae
    Srivatsa, Adith, V
    Nevius, Brandi N.
    Nichols, Christopher J.
    Carek, Andrew M.
    Fares, Munes
    Abdulkarim, Mubeena
    Hussain, Tarique
    Greil, F. Gerald
    Etemadi, Mozziyar
    Inan, Omer T.
    Tandon, Animesh
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2022, 11 (18):
  • [9] Transcutaneous Cervical Vagus Nerve Stimulation Inhibits the Reciprocal of the Pulse Transit Time's Responses to Traumatic Stress in Posttraumatic Stress Disorder
    Gazi, Asim H.
    Sundararaj, Srirakshaa
    Harrison, Anna B.
    Gurel, Nil Z.
    Wittbrodt, Matthew T.
    Alkhalaf, Mhmtjamil
    Soudan, Majd
    Levantsevych, Oleksiy
    Haffar, Ammer
    Shah, Amit J.
    Vaccarino, Viola
    Bremner, J. Douglas
    Inan, Omer T.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1444 - 1447
  • [10] Gurel N.Z., 2020, AMIA ANN S P 2019, P1061