Cell-Sized Lipid Vesicles as Artificial Antigen-Presenting Cells for Antigen-Specific T Cell Activation

被引:7
作者
Chen, Jui-Yi [1 ]
Agrawal, Sudhanshu [2 ]
Yi, Hsiu-Ping [1 ]
Vallejo, Derek [1 ]
Agrawal, Anshu [2 ]
Lee, Abraham P. P. [1 ]
机构
[1] Univ Calif Irvine, Biomed Engn, Irvine, CA 92617 USA
[2] Univ Calif Irvine, Dept Med, Irvine, CA 92617 USA
基金
美国国家卫生研究院;
关键词
artificial antigen-presenting cells; droplet generation; immunotherapy; microfluidics; T cell activation; EX-VIVO EXPANSION; CANCER-IMMUNOTHERAPY; COMPARATIVE TOXICITY; DENDRITIC CELLS; LINOLEIC-ACID; LIPOSOMES; LYMPHOCYTES; INDUCTION; DELIVERY; LAURDAN;
D O I
10.1002/adhm.202203163
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, efficient T cell activation is demonstrated using cell-sized artificial antigen-presenting cells (aAPCs) with protein-conjugated bilayer lipid membranes that mimic biological cell membranes. The highly uniform aAPCs are generated by a facile method based on standard droplet microfluidic devices. These aAPCs are able to activate the T cells in peripheral blood mononuclear cells, showing a 28-fold increase in interferon gamma (IFN gamma) secretion, a 233-fold increase in antigen-specific CD8 T cells expansion, and a 16-fold increase of CD4 T cell expansion. The aAPCs do not require repetitive boosting or additional stimulants and can function at a relatively low aAPC-to-T cell ratio (1:17). The research presents strong evidence that the surface fluidity and size of the aAPCs are critical to the effective formation of immune synapses essential for T cell activation. The findings demonstrate that the microfluidic-generated aAPCs can be instrumental in investigating the physiological conditions and mechanisms for T cell activation. Finally, this method demonstrates the feasibility of customizable aAPCs for a cost-effective off-the-shelf approach to immunotherapy.
引用
收藏
页数:15
相关论文
共 83 条
[1]  
An, 2015, ADV GENET ENG, V4, P130
[2]   MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS [J].
AXELROD, D ;
KOPPEL, DE ;
SCHLESSINGER, J ;
ELSON, E ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1976, 16 (09) :1055-1069
[3]  
Ben-Akiva E., 2018, JOVE-J VIS EXP, V2018, P58332
[4]   PHYSICAL-PROPERTIES OF THE FLUID LIPID-BILAYER COMPONENT OF CELL-MEMBRANES - A PERSPECTIVE [J].
BLOOM, M ;
EVANS, E ;
MOURITSEN, OG .
QUARTERLY REVIEWS OF BIOPHYSICS, 1991, 24 (03) :293-397
[5]   Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion [J].
Castro, Flavia ;
Cardoso, Ana Patricia ;
Goncalves, Raquel Madeira ;
Serre, Karine ;
Oliveira, Maria Jose .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[6]  
Chiu Y.-L., 2011, JOVE-J VIS EXP, V11, P2801
[7]   Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry [J].
Clayton, Katherine N. ;
Salameh, Janelle W. ;
Wereley, Steven T. ;
Kinzer-Ursem, Tamara L. .
BIOMICROFLUIDICS, 2016, 10 (05)
[8]   HLA-Class II Artificial Antigen Presenting Cells in CD4+ T Cell-Based Immunotherapy [J].
Couture, Alexandre ;
Garnier, Anthony ;
Docagne, Fabian ;
Boyer, Olivier ;
Vivien, Denis ;
Le-Mauff, Brigitte ;
Latouche, Jean-Baptiste ;
Toutirais, Olivier .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[9]   Comparative toxicity of oleic and linoleic acid on human lymphocytes [J].
Cury-Boaventura, MF ;
Gorjao, R ;
de Lima, TM ;
Newsholme, P ;
Curi, R .
LIFE SCIENCES, 2006, 78 (13) :1448-1456
[10]   Comparative toxicity of oleic acid and linoleic acid on Jurkat cells [J].
Cury-Boaventura, MF ;
Pompéia, C ;
Curi, R .
CLINICAL NUTRITION, 2004, 23 (04) :721-732