Innovative technique for separating proton core, proton beam, and alpha particles in solar wind 3D velocity distribution functions

被引:12
作者
De Marco, R. [1 ]
Bruno, R. [1 ]
Jagarlamudi, V. Krishna [1 ,2 ]
D'Amicis, R. [1 ]
Marcucci, M. F. [1 ]
Fortunato, V. [3 ]
Perrone, D. [4 ]
Telloni, D. [5 ]
Owen, C. J. [6 ]
Louarn, P. [7 ]
Fedorov, A. [7 ]
Livi, S. [8 ]
Horbury, T. [9 ]
机构
[1] INAF Ist Astrofis & Planetol Spaziali, Via Fosso del Cavaliere 100, I-00133 Rome, Italy
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[3] Planetek Italia SRL, Via Massaua 12, I-70132 Bari, BA, Italy
[4] ASI Italian Space Agcy, Via Politecn Snc, I-00133 Rome, Italy
[5] INAF Osservatorio Astron Torino, Via Osservatorio 20, I-10025 Pino Torinese, TO, Italy
[6] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[7] Inst Rech Astrophys & Planetol, 9 Ave Colonel Roche,BP 4346, F-31028 Toulouse 4, France
[8] Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA
[9] Imperial Coll London, South Kensington Campus, London SW7 2AZ, England
关键词
solar wind; plasmas; methods; statistical; instabilities; data analysis; TEMPERATURE ANISOTROPY; HELIUM ABUNDANCE; IONS; ALFVENICITY; SPEED; PARAMETERS; EVOLUTION; ORIGIN; 0.3-AU;
D O I
10.1051/0004-6361/202243719
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The identification of proton core, proton beam, and alpha particles in solar wind ion measurements is usually performed by applying specific fitting procedures to the particle energy spectra. In many cases, this turns out to be a challenging task due to the overlapping of the curves.Aims. We propose an alternative approach based on the statistical technique of clustering, a standard tool in many data-driven and machine learning applications.Methods. We developed a procedure that adapts clustering to the analysis of solar wind distribution functions. We first tested the method on a synthetic data set and then applied it to a time series of solar wind data.Results. The moments obtained for the different particle populations are in good agreement with the official data set and with the statistical studies available in the literature.Conclusions. Our method is shown to be a very promising technique that can be combined with the traditional fitting algorithms in working out difficult cases that involve the identification of particle species in solar wind measurements.
引用
收藏
页数:12
相关论文
共 75 条
[1]   The solar wind helium abundance: Variation with wind speed and the solar cycle [J].
Aellig, MR ;
Lazarus, AJ ;
Steinberg, JT .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (14) :2767-2770
[2]  
Aggarwal CC, 2014, CH CRC DATA MIN KNOW, P1
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   A Comparison of Alpha Particle and Proton Beam Differential Flows in Collisionally Young Solar Wind [J].
Alterman, B. L. ;
Kasper, Justin C. ;
Stevens, Michael L. ;
Koval, Andriy .
ASTROPHYSICAL JOURNAL, 2018, 864 (02)
[5]  
[Anonymous], 2008, The EM Algorithm and SecondExtensions, DOI DOI 10.2307/2534032
[6]   Highly structured slow solar wind emerging from an equatorial coronal hole [J].
Bale, S. D. ;
Badman, S. T. ;
Bonnell, J. W. ;
Bowen, T. A. ;
Burgess, D. ;
Case, A. W. ;
Cattell, C. A. ;
Chandran, B. D. G. ;
Chaston, C. C. ;
Chen, C. H. K. ;
Drake, J. F. ;
De Wit, T. Dudok ;
Eastwood, J. P. ;
Ergun, R. E. ;
Farrell, W. M. ;
Fong, C. ;
Goetz, K. ;
Goldstein, M. ;
Goodrich, K. A. ;
Harvey, P. R. ;
Horbury, T. S. ;
Howes, G. G. ;
Kasper, J. C. ;
Kellogg, P. J. ;
Klimchuk, J. A. ;
Korreck, K. E. ;
Krasnoselskikh, V. V. ;
Krucker, S. ;
Laker, R. ;
Larson, D. E. ;
MacDowall, R. J. ;
Maksimovic, M. ;
Malaspina, D. M. ;
Martinez-Oliveros, J. ;
McComas, D. J. ;
Meyer-Vernet, N. ;
Moncuquet, M. ;
Mozer, F. S. ;
Phan, T. D. ;
Pulupa, M. ;
Raouafi, N. E. ;
Salem, C. ;
Stansby, D. ;
Stevens, M. ;
Szabo, A. ;
Velli, M. ;
Woolley, T. ;
Wygant, J. R. .
NATURE, 2019, 576 (7786) :237-+
[7]   Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind [J].
Bale, S. D. ;
Kasper, J. C. ;
Howes, G. G. ;
Quataert, E. ;
Salem, C. ;
Sundkvist, D. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[8]  
Barber David, 2012, Bayesian reasoning and machine learning, DOI DOI 10.1017/CBO9780511804779
[9]  
Bezdek J., 1973, J CYBERNETICS, P3
[10]   Minor ions in the solar wind [J].
Bochsler, Peter .
ASTRONOMY AND ASTROPHYSICS REVIEW, 2007, 14 (01) :1-40