Deep Ensemble Learning for Human Activity Recognition UsingWearable Sensors via Filter Activation

被引:29
|
作者
Huang, Wenbo [1 ]
Zhang, Lei [1 ]
Wang, Shuoyuan [1 ]
Wu, Hao [2 ]
Song, Aiguo [3 ]
机构
[1] Nanjing Normal Univ, 2 Xuelin Rd,Qixia St, Nanjing 210023, Jiangsu, Peoples R China
[2] Yunnan Univ, Univ Town East Outer Ring South Rd, Kunming 650500, Yunnan, Peoples R China
[3] Southeast Univ, 2 Sipailou,Sipailou St, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sensor; convolutional neural network; human activity recognition; deep learning; filter activation; NETWORKS;
D O I
10.1145/3551486
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
During the past decade, human activity recognition (HAR) using wearable sensors has become a new research hot spot due to its extensive use in various application domains such as healthcare, fitness, smart homes, and eldercare. Deep neural networks, especially convolutional neural networks (CNNs), have gained a lot of attention in HAR scenario. Despite exceptional performance, CNNs with heavy overhead is not the best option for HAR task due to the limitation of computing resource on embedded devices. As far as we know, there are many invalid filters in CNN that contribute very little to output. Simply pruning these invalid filters could effectively accelerateCNNs, but it inevitably hurts performance. In this article, we first propose a novelCNN for HAR that uses filter activation. In comparison with filter pruning that is motivated for efficient consideration, filter activation aims to activate these invalid filters from an accuracy boosting perspective. We perform extensive experiments on several public HAR datasets, namely, UCI-HAR (UCI), OPPORTUNITY (OPPO), UniMiB-SHAR (Uni), PAMAP2 (PAM2), WISDM (WIS), and USC-HAD (USC), which show the superiority of the proposed method against existing state-of-the-art (SOTA) approaches. Ablation studies are conducted to analyze its internal mechanism. Finally, the inference speed and power consumption are evaluated on an embedded Raspberry Pi Model 3 B plus platform.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Deep Learning for Human Activity Recognition in Mobile Computing
    Plotz, Thomas
    Guan, Yu
    COMPUTER, 2018, 51 (05) : 50 - 59
  • [32] Evaluation of deep learning model for human activity recognition
    Owais Bhat
    Dawood A Khan
    Evolving Systems, 2022, 13 : 159 - 168
  • [33] Evaluation of Deep Learning Techniques in Human Activity Recognition
    Mendes, Tiago
    Pombo, Nuno
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 : 114 - 123
  • [34] Evaluation of deep learning model for human activity recognition
    Bhat, Owais
    Khan, Dawood A.
    EVOLVING SYSTEMS, 2022, 13 (01) : 159 - 168
  • [35] Assessment of IMU Configurations for Human Activity Recognition Using Ensemble Learning
    Murphy, Samuel J.
    Vitali, Rachel V.
    IEEE ACCESS, 2024, 12 : 111433 - 111442
  • [36] Federated Learning via Augmented Knowledge Distillation for Heterogenous Deep Human Activity Recognition Systems
    Gad, Gad
    Fadlullah, Zubair
    SENSORS, 2023, 23 (01)
  • [37] Deep learning and model personalization in sensor-based human activity recognition
    Ferrari A.
    Micucci D.
    Mobilio M.
    Napoletano P.
    Journal of Reliable Intelligent Environments, 2023, 9 (01) : 27 - 39
  • [38] An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones
    Ankita
    Rani, Shalli
    Babbar, Himanshi
    Coleman, Sonya
    Singh, Aman
    Aljahdali, Hani Moaiteq
    SENSORS, 2021, 21 (11)
  • [39] Suspicious Human Activity Recognition From Surveillance Videos Using Deep Learning
    Mohamed Zaidi, Monji
    Avelino Sampedro, Gabriel
    Almadhor, Ahmad
    Alsubai, Shtwai
    Al Hejaili, Abdullah
    Gregus, Michal
    Abbas, Sidra
    IEEE ACCESS, 2024, 12 : 105497 - 105510
  • [40] Deep Learning Class Discrimination Based on Prior Probability for Human Activity Recognition
    Osayamwen, Festus
    Tapamo, Jules-Raymond
    IEEE ACCESS, 2019, 7 : 14747 - 14756