Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning

被引:17
作者
Rodriguez-Temporal, David [1 ,2 ]
Herrera, Laura [3 ]
Alcaide, Fernando [4 ,5 ]
Domingo, Diego [6 ]
Hery-Arnaud, Genevieve [7 ,8 ]
van Ingen, Jakko [9 ]
Van den Bossche, An [10 ]
Ingebretsen, Andre [11 ]
Beauruelle, Clemence [7 ,8 ]
Terschlusen, Eva [9 ]
Boarbi, Samira [10 ]
Vila, Neus [4 ]
Arroyo, Manuel J. [12 ]
Mendez, Gema [12 ]
Munoz, Patricia [1 ,2 ,13 ,14 ]
Mancera, Luis [12 ]
Ruiz-Serrano, Maria Jesus [1 ]
Rodriguez-Sanchez, Belen [1 ,2 ]
机构
[1] Hosp Gen Univ Gregorio Maranon, Clin Microbiol & Infect Dis Dept, Madrid, Spain
[2] Inst Invest Sanitaria Gregorio Maranon, Madrid, Spain
[3] Inst Salud Carlos III, Ctr Nacl Microbiol, Serv Bacteriol, Majadahonda, Spain
[4] Hosp Univ Bellvitge IDIBELL, Serv Microbiol, Lhospitalet De Llobregat, Spain
[5] Univ Barcelona, Dept Patol & Terapeut Expt, Lhospitalet De Llobregat, Spain
[6] Hosp Univ La Princesa, Serv Microbiol, Madrid, Spain
[7] Brest Univ Hosp, Unit Bacteriol, Brest, France
[8] Brest Univ, INSERM, UMR 1078, GGB,Microbiota Axis, Brest, France
[9] Radboud Univ Nijmegen, Dept Med Microbiol, Med Ctr, Nijmegen, Netherlands
[10] Sciensano, Div Human Bacterial Dis, Brussels, Belgium
[11] Oslo Univ Hosp, Oslo, Norway
[12] Clover Bioanalyt Software, Granada, Spain
[13] CIBER Enfermedades Resp CIBERES CB06 06 0058, Madrid, Spain
[14] Univ Complutense Madrid, Fac Med, Med Dept, Madrid, Spain
关键词
Mycobacterium abscessus; subspecies differentiation; MALDI-TOF; mass spectrometry; machine learning; Mycobacterium bolletii; Mycobacterium massiliense; LASER-DESORPTION IONIZATION; TIME;
D O I
10.1128/jcm.01110-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS. Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Rapid detection of antimicrobial resistance by MALDI-TOF mass spectrometry [J].
Oviano, Marina ;
Dolores Rojo, Maria ;
Navarro Mari, Jose Maria ;
Bou, German .
ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA, 2016, 34 :36-41
[42]   Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study [J].
Mortier, Thomas ;
Wieme, Anneleen D. ;
Vandamme, Peter ;
Waegeman, Willem .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :6157-6168
[43]   MALDI-TOF mass spectrometry for rapid differentiation of Tenacibaculum species pathogenic for fish [J].
Fernandez-Alvarez, Clara ;
Torres-Corral, Yolanda ;
Saltos-Rosero, Nancy ;
Santos, Ysabel .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (13) :5377-5390
[44]   Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area [J].
Florio, Walter ;
Baldeschi, Lelio ;
Rizzato, Cosmeri ;
Tavanti, Arianna ;
Ghelardi, Emilia ;
Lupetti, Antonella .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2020, 10
[45]   Identification of pathogens from native urine samples by MALDI-TOF/TOF tandem mass spectrometry [J].
Oros, Damir ;
Ceprnja, Marina ;
Zucko, Jurica ;
Cindric, Mario ;
Hozic, Amela ;
Skrlin, Jasenka ;
Barisi, Karmela ;
Melvan, Ena ;
Uroi, Ksenija ;
Kos, Blazenka ;
Starcevic, Antonio .
CLINICAL PROTEOMICS, 2020, 17 (01)
[46]   Cereal variety identification using MALDI-TOF mass spectrometry SNP genotyping [J].
Pattemore, J. A. ;
Rice, N. ;
Marshall, D. F. ;
Waugh, R. ;
Henry, R. J. .
JOURNAL OF CEREAL SCIENCE, 2010, 52 (03) :356-361
[47]   Identification of yeast isolated from dermatological patients by MALDI-TOF mass spectrometry [J].
Seyfarth, Florian ;
Wiegand, Cornelia ;
Erhard, Marcel ;
Graeser, Yvonne ;
Elsner, Peter ;
Hipler, Uta-Christina .
MYCOSES, 2012, 55 (03) :276-280
[48]   Performance of MALDI-TOF Mass Spectrometry (VITEK MS) in the Identification of Salmonella Species [J].
Kim, Gyu Ri ;
Kim, Si Hyun ;
Kim, Eun-Young ;
Park, Eun Hee ;
Hwang, In Yeong ;
Jeong, Seok Hoon ;
Kim, Hyun Soo ;
Kim, Young Ah ;
Uh, Young ;
Shin, Kyeong Seob ;
Kim, Young Ree ;
Ryoo, Namhee ;
Shin, Jong Hee ;
Shin, Jeong Hwan .
MICROORGANISMS, 2022, 10 (10)
[49]   An identification of MARK inhibitors using high throughput MALDI-TOF mass spectrometry [J].
Hruba, Lenka ;
Polishchuk, Pavel ;
Das, Viswanath ;
Hajduch, Marian ;
Dzubak, Petr .
BIOMEDICINE & PHARMACOTHERAPY, 2022, 146
[50]   MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory [J].
Carbonnelle, Etienne ;
Mesquita, Cecile ;
Bille, Emmanuelle ;
Day, Nesrine ;
Dauphin, Brunhilde ;
Beretti, Jean-Luc ;
Ferroni, Agnes ;
Gutmann, Laurent ;
Nassif, Xavier .
CLINICAL BIOCHEMISTRY, 2011, 44 (01) :104-109