Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning

被引:17
作者
Rodriguez-Temporal, David [1 ,2 ]
Herrera, Laura [3 ]
Alcaide, Fernando [4 ,5 ]
Domingo, Diego [6 ]
Hery-Arnaud, Genevieve [7 ,8 ]
van Ingen, Jakko [9 ]
Van den Bossche, An [10 ]
Ingebretsen, Andre [11 ]
Beauruelle, Clemence [7 ,8 ]
Terschlusen, Eva [9 ]
Boarbi, Samira [10 ]
Vila, Neus [4 ]
Arroyo, Manuel J. [12 ]
Mendez, Gema [12 ]
Munoz, Patricia [1 ,2 ,13 ,14 ]
Mancera, Luis [12 ]
Ruiz-Serrano, Maria Jesus [1 ]
Rodriguez-Sanchez, Belen [1 ,2 ]
机构
[1] Hosp Gen Univ Gregorio Maranon, Clin Microbiol & Infect Dis Dept, Madrid, Spain
[2] Inst Invest Sanitaria Gregorio Maranon, Madrid, Spain
[3] Inst Salud Carlos III, Ctr Nacl Microbiol, Serv Bacteriol, Majadahonda, Spain
[4] Hosp Univ Bellvitge IDIBELL, Serv Microbiol, Lhospitalet De Llobregat, Spain
[5] Univ Barcelona, Dept Patol & Terapeut Expt, Lhospitalet De Llobregat, Spain
[6] Hosp Univ La Princesa, Serv Microbiol, Madrid, Spain
[7] Brest Univ Hosp, Unit Bacteriol, Brest, France
[8] Brest Univ, INSERM, UMR 1078, GGB,Microbiota Axis, Brest, France
[9] Radboud Univ Nijmegen, Dept Med Microbiol, Med Ctr, Nijmegen, Netherlands
[10] Sciensano, Div Human Bacterial Dis, Brussels, Belgium
[11] Oslo Univ Hosp, Oslo, Norway
[12] Clover Bioanalyt Software, Granada, Spain
[13] CIBER Enfermedades Resp CIBERES CB06 06 0058, Madrid, Spain
[14] Univ Complutense Madrid, Fac Med, Med Dept, Madrid, Spain
关键词
Mycobacterium abscessus; subspecies differentiation; MALDI-TOF; mass spectrometry; machine learning; Mycobacterium bolletii; Mycobacterium massiliense; LASER-DESORPTION IONIZATION; TIME;
D O I
10.1128/jcm.01110-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS. Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification
    Carbonnelle, Etienne
    Grohs, Patrick
    Jacquier, Herve
    Day, Nesrine
    Tenza, Sylvie
    Dewailly, Alexandra
    Vissouarn, Odile
    Rottman, Martin
    Herrmann, Jean-Louis
    Podglajen, Isabelle
    Raskine, Laurent
    JOURNAL OF MICROBIOLOGICAL METHODS, 2012, 89 (02) : 133 - 136
  • [22] DNA analysis by MALDI-TOF mass spectrometry
    Gut, IG
    HUMAN MUTATION, 2004, 23 (05) : 437 - 441
  • [23] MALDI-TOF mass spectrometry: Evaluation of the preanalytical phase for identification of molds
    Maldonado, Ivana
    Garcia Ramirez, Dolores
    Striebeck, Pablo
    Lafage, Marcelo
    Fernandez Canigia, Liliana
    REVISTA ARGENTINA DE MICROBIOLOGIA, 2017, 49 (01): : 7 - 14
  • [24] Rapid identification of bovine mastitis pathogens by MALDI-TOF Mass Spectrometry
    Braga, Patricia A. C.
    Goncalves, Juliano L.
    Barreiro, Juliana R.
    Ferreira, Christina R.
    Tomazi, Tiago
    Eberlin, Marcos N.
    Santos, Marcos, V
    PESQUISA VETERINARIA BRASILEIRA, 2018, 38 (04): : 586 - 594
  • [25] Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture
    Biswas, Silpak
    Rolain, Jean-Marc
    JOURNAL OF MICROBIOLOGICAL METHODS, 2013, 92 (01) : 14 - 24
  • [26] Identification and Cluster Analysis of Streptococcus pyogenes by MALDI-TOF Mass Spectrometry
    Wang, Jie
    Zhou, Na
    Xu, Bin
    Hao, Huaijie
    Kang, Lin
    Zheng, Yuling
    Jiang, Yongqiang
    Jiang, Hua
    PLOS ONE, 2012, 7 (11):
  • [27] MALDI-TOF mass spectrometry and bacterial taxonomy
    Lay, JO
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2000, 19 (08) : 507 - 516
  • [28] MALDI-TOF Mass Spectrometry in the Clinical Microbiology Laboratory; Beyond Identification
    Schubert, Soeren
    Kostrzewa, Markus
    CURRENT AND EMERGING TECHNOLOGIES FOR THE DIAGNOSIS OF MICROBIAL INFECTIONS, 2015, 42 : 501 - 524
  • [29] MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis
    Singhal, Neelja
    Kumar, Manish
    Kanaujia, Pawan K.
    Virdi, Jugsharan S.
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [30] MALDI-TOF mass spectrometry - a rapid method for the identification of dermatophyte species
    Nenoff, Pietro
    Erhard, Marcel
    Simon, Jan C.
    Muylowa, Grace K.
    Herrmann, Juergen
    Rataj, Waldemar
    Graeser, Yvonne
    MEDICAL MYCOLOGY, 2013, 51 (01) : 17 - 24