Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning

被引:17
|
作者
Rodriguez-Temporal, David [1 ,2 ]
Herrera, Laura [3 ]
Alcaide, Fernando [4 ,5 ]
Domingo, Diego [6 ]
Hery-Arnaud, Genevieve [7 ,8 ]
van Ingen, Jakko [9 ]
Van den Bossche, An [10 ]
Ingebretsen, Andre [11 ]
Beauruelle, Clemence [7 ,8 ]
Terschlusen, Eva [9 ]
Boarbi, Samira [10 ]
Vila, Neus [4 ]
Arroyo, Manuel J. [12 ]
Mendez, Gema [12 ]
Munoz, Patricia [1 ,2 ,13 ,14 ]
Mancera, Luis [12 ]
Ruiz-Serrano, Maria Jesus [1 ]
Rodriguez-Sanchez, Belen [1 ,2 ]
机构
[1] Hosp Gen Univ Gregorio Maranon, Clin Microbiol & Infect Dis Dept, Madrid, Spain
[2] Inst Invest Sanitaria Gregorio Maranon, Madrid, Spain
[3] Inst Salud Carlos III, Ctr Nacl Microbiol, Serv Bacteriol, Majadahonda, Spain
[4] Hosp Univ Bellvitge IDIBELL, Serv Microbiol, Lhospitalet De Llobregat, Spain
[5] Univ Barcelona, Dept Patol & Terapeut Expt, Lhospitalet De Llobregat, Spain
[6] Hosp Univ La Princesa, Serv Microbiol, Madrid, Spain
[7] Brest Univ Hosp, Unit Bacteriol, Brest, France
[8] Brest Univ, INSERM, UMR 1078, GGB,Microbiota Axis, Brest, France
[9] Radboud Univ Nijmegen, Dept Med Microbiol, Med Ctr, Nijmegen, Netherlands
[10] Sciensano, Div Human Bacterial Dis, Brussels, Belgium
[11] Oslo Univ Hosp, Oslo, Norway
[12] Clover Bioanalyt Software, Granada, Spain
[13] CIBER Enfermedades Resp CIBERES CB06 06 0058, Madrid, Spain
[14] Univ Complutense Madrid, Fac Med, Med Dept, Madrid, Spain
关键词
Mycobacterium abscessus; subspecies differentiation; MALDI-TOF; mass spectrometry; machine learning; Mycobacterium bolletii; Mycobacterium massiliense; LASER-DESORPTION IONIZATION; TIME;
D O I
10.1128/jcm.01110-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS. Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media
    Godmer, Alexandre
    Bigey, Lise
    Giai-Gianetto, Quentin
    Pierrat, Gautier
    Mohammad, Noshine
    Mougari, Faiza
    Piarroux, Renaud
    Veziris, Nicolas
    Aubry, Alexandra
    MICROBIAL BIOTECHNOLOGY, 2024, 17 (09):
  • [2] MALDI-TOF Mass Spectrometry for Microorganism Identification
    Dingle, Tanis C.
    Butler-Wu, Susan M.
    CLINICS IN LABORATORY MEDICINE, 2013, 33 (03) : 589 - +
  • [3] A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification
    Patel, Robin
    JOURNAL OF FUNGI, 2019, 5 (01)
  • [4] MALDI-TOF Mass Spectrometry for Microorganism Identification
    Bourassa, Lori
    Butler-Wu, Susan M.
    CURRENT AND EMERGING TECHNOLOGIES FOR THE DIAGNOSIS OF MICROBIAL INFECTIONS, 2015, 42 : 37 - 85
  • [5] Rapid discrimination of Bifidobacterium longum subspecies based on MALDI-TOF MS and machine learning
    Liu, Kexin
    Wang, Yajie
    Zhao, Minlei
    Xue, Gaogao
    Wang, Ailan
    Wang, Weijie
    Xu, Lida
    Chen, Jianguo
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [6] Identification of Stachybotrys spp. by MALDI-TOF mass spectrometry
    Ulrich, Sebastian
    Biermaier, Barbara
    Bader, Oliver
    Wolf, Georg
    Straubinger, Reinhard K.
    Didier, Andrea
    Sperner, Brigitte
    Schwaiger, Karin
    Gareis, Manfred
    Gottschalk, Christoph
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2016, 408 (27) : 7565 - 7581
  • [7] MALDI-TOF mass spectrometry of bacteria
    Lay, JO
    MASS SPECTROMETRY REVIEWS, 2001, 20 (04) : 172 - 194
  • [8] Identification of mycobacteria species through mass spectrometry (MALDI-TOF)
    Contreras, Samuel
    Rodriguez, David
    Vera, Francisco
    Elvira Balcells, Maria
    Celis, Luis
    Legarraga, Paulette
    Carlos Roman, Juan
    Garcia, Patricia
    REVISTA CHILENA DE INFECTOLOGIA, 2020, 37 (03): : 252 - 256
  • [9] Identification of Stachybotrys spp. by MALDI-TOF mass spectrometry
    Sebastian Ulrich
    Barbara Biermaier
    Oliver Bader
    Georg Wolf
    Reinhard K. Straubinger
    Andrea Didier
    Brigitte Sperner
    Karin Schwaiger
    Manfred Gareis
    Christoph Gottschalk
    Analytical and Bioanalytical Chemistry, 2016, 408 : 7565 - 7581
  • [10] Evaluation of MALDI-TOF mass spectrometry for identification of anaerobic bacteria
    Barba, M. J.
    Fernandez, A.
    Oviano, M.
    Fernandez, B.
    Velasco, D.
    Bou, G.
    ANAEROBE, 2014, 30 : 126 - 128