RCS Information Aided Poisson Multi-Bernoulli Mixture Filter in Clutter Background

被引:0
|
作者
Bai, Mengdi [1 ]
Zhang, Qilei [1 ]
Yu, Ruofeng [1 ]
Zhang, Yongsheng [1 ]
Sun, Bin [2 ]
机构
[1] Natl Univ Def Technol NUDT, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
[2] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Information filters; Target tracking; Filtering algorithms; Signal to noise ratio; Radio frequency; Radar tracking; Estimation; Gamma Gaussian mixture (GGM); multitarget tracking (MTT); Poisson multi-Bernoulli mixture (PMBM); radar cross section (RCS) information; AMPLITUDE INFORMATION; FINITE SETS; TRACKING; DERIVATION; RADAR; ORDER;
D O I
10.1109/JSEN.2023.3348155
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For modern radar systems, the measurement of the target's radar cross section (RCS) is a standard output besides kinematic measurements. It is straightforward to incorporate RCS information into tracking algorithms for performance improvements in more realistic and difficult scenarios. However, in practice, the proper integration of RCS recursion and Bayesian filter is promising but challenging. To address this issue, an RCS information aided Poisson multi-Bernoulli mixture (RCSI-PMBM) filter in clutter background is proposed in this article. First, the Bayesian RCS estimation strategy is presented, and then, the RCSI-PMBM filter is analytically developed. Moreover, based on the Gamma Gaussian mixture (GGM) form, an effective and efficient implementation of the proposed RCSI-PMBM filter is developed. Finally, the validity of the proposed algorithm is verified by simulation tests with challenging scenarios.
引用
收藏
页码:5039 / 5052
页数:14
相关论文
共 50 条
  • [21] A Poisson multi-Bernoulli mixture filter with spawning based on Kullback–Leibler divergence minimization
    Zhenzhen SU
    Hongbing JI
    Yongquan ZHANG
    Chinese Journal of Aeronautics , 2021, (11) : 154 - 168
  • [22] Interacting multiple model Poisson multi-Bernoulli mixture filter for maneuvering targets tracking
    Chen Z.
    Song L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (03): : 786 - 794
  • [23] A Poisson multi-Bernoulli mixture filter with spawning based on Kullback–Leibler divergence minimization
    Zhenzhen SU
    Hongbing JI
    Yongquan ZHANG
    Chinese Journal of Aeronautics, 2021, 34 (11) : 154 - 168
  • [24] Amplitude Information Aided Robust Multi-Bernoulli Filter for Marine Target Tracking
    Liu, Chao
    Zhang, Zhiguo
    Sun, Jinping
    Qi, Yaolong
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 863 - 867
  • [25] A Clutter-Agnostic Generalized Labeled Multi-Bernoulli Filter
    Mahler, Ronald
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646
  • [26] Gating Technique for the Gaussian Mixture Multi-Bernoulli Filter
    Jiang, Tongyang
    Liu, Meiqin
    Zhang, Senlin
    Sheng, Weihua
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 1096 - 1101
  • [27] Poisson Multi-Bernoulli Mixture Filter for Multiple Extended Object Tracking Using KolmogorovSmirnov Test
    Li, Peng
    Chen, Cheng
    Sun, Youpeng
    Wang, Wenhui
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6541 - 6555
  • [28] Analysis of recycling performance in Poisson multi-Bernoulli mixture filters
    Xie, Xingxiang
    Wang, Yang
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 1121 - 1127
  • [29] Poisson multi-Bernoulli mixture filters with coloured measurement noise
    Li, Wenjuan
    Lu, Xingyu
    Lu, Aihong
    Gu, Hong
    Su, Weimin
    IET RADAR SONAR AND NAVIGATION, 2022, 16 (09): : 1554 - 1568
  • [30] Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking
    Du Haocui
    Xie Weixin
    Liu Zongxiang
    Li Liangqun
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (05) : 1106 - 1119