RCS Information Aided Poisson Multi-Bernoulli Mixture Filter in Clutter Background

被引:0
|
作者
Bai, Mengdi [1 ]
Zhang, Qilei [1 ]
Yu, Ruofeng [1 ]
Zhang, Yongsheng [1 ]
Sun, Bin [2 ]
机构
[1] Natl Univ Def Technol NUDT, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
[2] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Information filters; Target tracking; Filtering algorithms; Signal to noise ratio; Radio frequency; Radar tracking; Estimation; Gamma Gaussian mixture (GGM); multitarget tracking (MTT); Poisson multi-Bernoulli mixture (PMBM); radar cross section (RCS) information; AMPLITUDE INFORMATION; FINITE SETS; TRACKING; DERIVATION; RADAR; ORDER;
D O I
10.1109/JSEN.2023.3348155
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For modern radar systems, the measurement of the target's radar cross section (RCS) is a standard output besides kinematic measurements. It is straightforward to incorporate RCS information into tracking algorithms for performance improvements in more realistic and difficult scenarios. However, in practice, the proper integration of RCS recursion and Bayesian filter is promising but challenging. To address this issue, an RCS information aided Poisson multi-Bernoulli mixture (RCSI-PMBM) filter in clutter background is proposed in this article. First, the Bayesian RCS estimation strategy is presented, and then, the RCSI-PMBM filter is analytically developed. Moreover, based on the Gamma Gaussian mixture (GGM) form, an effective and efficient implementation of the proposed RCSI-PMBM filter is developed. Finally, the validity of the proposed algorithm is verified by simulation tests with challenging scenarios.
引用
收藏
页码:5039 / 5052
页数:14
相关论文
共 50 条
  • [1] Bernoulli merging for the Poisson multi-Bernoulli mixture filter
    Fontana, Marco
    Garcia-Fernandez, Angel F.
    Maskell, Simon
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 262 - 269
  • [2] Robust Poisson Multi-Bernoulli Filter With Unknown Clutter Rate
    Si, Weijian
    Zhu, Hongfan
    Qu, Zhiyu
    IEEE ACCESS, 2019, 7 : 117871 - 117882
  • [3] Poisson Multi-Bernoulli Mixture Filter With General Target-Generated Measurements and Arbitrary Clutter
    Garcia-Fernandez, Angel F.
    Xia, Yuxuan
    Svensson, Lennart
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1895 - 1906
  • [4] Multiscan implementation of the trajectory poisson multi-Bernoulli mixture filter
    Xia, Yuxuan
    Granström, Karl
    Svensson, Lennart
    García-Fernández, Ángel F.
    Williams, Jason L.
    Journal of Advances in Information Fusion, 2019, 14 (02): : 213 - 235
  • [5] Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation
    Garcia-Fernandez, Angel F.
    Williams, Jason L.
    Granstrom, Karl
    Svensson, Lennart
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (04) : 1883 - 1901
  • [6] A Partitioned Poisson Multi-Bernoulli Filter
    Su, Zhenzhen
    Tian, Cong
    Ji, Hongbing
    Zhang, Yongquan
    IEEE SENSORS JOURNAL, 2023, 23 (14) : 16002 - 16012
  • [7] Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter
    Du, Haocui
    Xie, Weixin
    SENSORS, 2020, 20 (18) : 1 - 15
  • [8] A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets
    Garcia-Fernandez, Angel
    Williams, Jason
    Svensson, Lennart
    Xia, Yuxuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2600 - 2610
  • [9] Robust Poisson Multi-Bernoulli Mixture Filter With Unknown Detection Probability
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 886 - 899
  • [10] Multiple Model Poisson Multi-Bernoulli Mixture Filter for Maneuvering Targets
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 3143 - 3154