A guide to equivalent circuit fitting for impedance analysis and battery state estimation

被引:18
作者
Santoni, Francesco [1 ]
De Angelis, Alessio [1 ]
Moschitta, Antonio [1 ]
Carbone, Paolo [1 ]
Galeotti, Matteo [2 ]
Cina, Lucio [3 ]
Giammanco, Corrado [2 ]
Di Carlo, Aldo [2 ,4 ]
机构
[1] Univ Perugia, Dept Engn, Via Goffredo Duranti 93, I-06125 Perugia, Italy
[2] Tor Vergata Univ Rome, Dept Elect Engn, Via Politecn 1, I-00133 Rome, Italy
[3] Cicci Res Srl, Via Giordania 227, I-58100 Grosseto, Italy
[4] CNR, Ist Struttura Mat, ISM CNR, Via Fosso Cavaliere 100, I-00133 Rome, Italy
关键词
Lithium ion battery (Li-Ion); Lithium polymer battery (LiPo); Electrochemical impedance spectroscopy (EIS); Impedance analysis; Equivalent circuit model; Circuit parameter fitting; Analysis of uncertainty; Sensitivity analysis; State-of-charge (SOC) estimation; State-of-health (SOH) estimation; Machine learning; Gaussian process regression; IDENTIFIABILITY; SPECTROSCOPY; MODELS; CHARGE;
D O I
10.1016/j.est.2023.110389
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study we define a comprehensive method for analyzing electrochemical impedance spectra of lithium batteries using equivalent circuit models, and for information extraction on state -of -charge and state -of -health from impedance data by means of machine learning methods. Estimation of circuit parameters typically implies a non -linear optimization problem. A detailed method for estimating initial values of the optimization algorithm is described, emphasizing short computation times and efficient convergence to global minimum. Parameters identifiability is investigated through an analysis of the injectivity of the model, Cramer-Rao lower bound, profile likelihood, and sensitivity analysis. An exploratory data analysis is presented to estimate the degree of correlation between impedance spectra (or circuit parameters) and battery state -of -charge or state -of -health, prior to the implementation of any machine learning algorithm. A publicly available dataset of impedance spectra of five lithium-polymer batteries is used to test the whole procedure. Estimation of state -of -charge and state -of -health is performed by implementing Gaussian process regression.
引用
收藏
页数:21
相关论文
共 59 条
  • [1] Agudelo B., 2019, JCGE C S JEUNES CHER
  • [2] Identifiability of Generalized Randles Circuit Models
    Alavi, Seyed Mohammad Mahdi
    Mahdi, Adam
    Payne, Stephen J.
    Howey, David A.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (06) : 2112 - 2120
  • [3] State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach
    Babaeiyazdi, Iman
    Rezaei-Zare, Afshin
    Shokrzadeh, Shahab
    [J]. ENERGY, 2021, 223
  • [4] The expression of uncertainty in non-linear parameter estimation
    Balsamo, A.
    Mana, G.
    Pennecchi, F.
    [J]. METROLOGIA, 2006, 43 (05) : 396 - 402
  • [5] Bezha M, 2019, 2019 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ECCE ASIA (ICPE 2019 - ECCE ASIA)
  • [6] BRETHERTON CS, 1992, J CLIMATE, V5, P541, DOI 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO
  • [7] 2
  • [8] Buchicchio E., 2022, 25 IMEKO TC4 INT S 2
  • [9] Uncertainty characterization of a CNN method for Lithium-Ion Batteries state of charge estimation using EIS data
    Buchicchio, Emanuele
    De Angelis, Alessio
    Santoni, Francesco
    Carbone, Paolo
    [J]. MEASUREMENT, 2023, 220
  • [10] Battery SOC estimation from EIS data based on machine learning and equivalent circuit model
    Buchicchio, Emanuele
    De Angelis, Alessio
    Santoni, Francesco
    Carbone, Paolo
    Bianconi, Francesco
    Smeraldi, Fabrizio
    [J]. ENERGY, 2023, 283