Prediction of early death after atrial fibrillation diagnosis using a machine learning approach: A French nationwide cohort study

被引:2
作者
Bisson, Arnaud [1 ,2 ,3 ,4 ,5 ,6 ]
Lemrini, Yassine [1 ,2 ]
Romiti, Giulio Francesco [5 ,6 ,7 ]
Proietti, Marco [8 ,9 ]
Angoulvant, Denis [1 ,2 ,3 ]
Bentounes, Sidahmed [1 ,2 ]
El-Bouri, Wahbi [5 ,6 ]
Lip, Gregory Y. H. [5 ,6 ]
Fauchier, Laurent [1 ,2 ]
机构
[1] Ctr Hosp Reg Univ, Serv Cardiol, 2 Blvd Tonnelle, F-37000 Tours, France
[2] Fac Med Tours, 2 Blvd Tonnelle, F-37000 Tours, France
[3] Univ Tours, Transplantat Immun Inflammat, Tours, France
[4] Ctr Hosp Reg Univ Orleans, Serv Cardiol, Orleans, France
[5] Univ Liverpool, Liverpool John Moores Univ, Liverpool Ctr Cardiovasc Sci, Liverpool, England
[6] Liverpool Heart & Chest Hosp, Liverpool, England
[7] Sapienza Univ Rome, Dept Translat & Precis Med, Rome, Italy
[8] Univ Milan, Dept Clin Sci & Community Hlth, Milan, Italy
[9] IRCCS Ist Clin Sci Maugeri, IRCCS Istituti Clinici Scientif Maugeri, Milan, Italy
关键词
OLDER-ADULTS; RISK; STROKE; MULTIMORBIDITY; MORTALITY; ANTICOAGULANT; PATHWAY; FRAILTY; EVENTS; SCORE;
D O I
10.1016/j.ahj.2023.08.006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Atrial fibrillation is associated with impor tant mor tality but the usual clinical risk factor based scores only modestly predict mortality. This study aimed to develop machine learning models for the prediction of death occurrence within the year following atrial fibrillation diagnosis and compare predictive ability against usual clinical risk scores. Methods and Results We used a nationwide cohort of 2,435,541 newly diagnosed atrial fibrillation patients seen in French hospitals from 2011 to 2019. Three machine learning models were trained to predict mortality within the first year using a training set (70% of the cohort). The best model was selected to be evaluated and compared with previously published scores on the validation set (30% of the cohort). Discrimination of the best model was evaluated using the C index. Within the first year following atrial fibrillation diagnosis, 342,005 patients (14.4%) died after a period of 83 (SD 98) days (median 37 [10-129]). The best machine learning model selected was a deep neural network with a C index of 0.785 (95% CI, 0.781-0.789) on the validation set. Compared to clinical risk scores, the selected model was superior to the CHA 2 DS 2 -VASc and HAS-BLED risk scores and superior to dedicated scores such as Charlson Comorbidity Index and Hospital Frailty Risk Score to predict death within the year following atrial fibrillation diagnosis (C indexes: 0.597; 0.562; Conclusion Machine learning algorithms predict early death after atrial fibrillation diagnosis and may help clinicians to better risk stratify atrial fibrillation patients at high risk of mortality.
引用
收藏
页码:191 / 202
页数:12
相关论文
共 49 条
  • [1] All-cause mortality in 272 186 patients hospitalized with incident atrial fibrillation 1995-2008: a Swedish nationwide long-term case-control study
    Andersson, Tommy
    Magnuson, Anders
    Bryngelsson, Ing-Liss
    Frobert, Ole
    Henriksson, Karin M.
    Edvardsson, Nils
    Poci, Dritan
    [J]. EUROPEAN HEART JOURNAL, 2013, 34 (14) : 1061 - 1067
  • [2] Two-year outcomes of patients with newly diagnosed atrial fibrillation: results from GARFIELD-AF
    Bassand, Jean-Pierre
    Accetta, Gabriele
    Camm, Alan John
    Cools, Frank
    Fitzmaurice, David A.
    Fox, Keith A. A.
    Goldhaber, Samuel Z.
    Goto, Shinya
    Haas, Sylvia
    Hacke, Werner
    Kayani, Gloria
    Mantovani, Lorenzo G.
    Misselwitz, Frank
    ten Cate, Hugo
    Turpie, Alexander G. G.
    Verheugt, Freek W. A.
    Kakkar, Ajay K.
    Lucas Luciardi, Hector
    Gibbs, Harry
    Brodmann, Marianne
    Pereira Barretto, Antonio Carlos
    Connolly, Stuart J.
    Spyropoulos, Alex
    Eikelboom, John
    Corbalan, Ramon
    Hu, Dayi
    Jansky, Petr
    Nielsen, Jorn Dalsgaard
    Ragy, Hany
    Raatikainen, Pekka
    Le Heuzey, Jean-Yves
    Darius, Harald
    Keltai, Matyas
    Kakkar, Sanjay
    Sawhney, Jitendra Pal Singh
    Agnelli, Giancarlo
    Ambrosio, Giuseppe
    Koretsune, Yukihiro
    Sanchez Diaz, Carlos Jerjes
    Atar, Dan
    Stepinska, Janina
    Panchenko, Elizaveta
    Lim, Toon Wei
    Jacobson, Barry
    Oh, Seil
    Vinolas, Xavier
    Rosenqvist, Marten
    Steffel, Jan
    Angchaisuksiri, Pantep
    Oto, Ali
    [J]. EUROPEAN HEART JOURNAL, 2016, 37 (38) : 2882 - +
  • [3] Benjamin EJ, 2019, CIRCULATION, V139, P56, DOI [DOI 10.1161/CIR.0000000000000746, 10.1161/CIR.0000000000000757, 10.1161/CIR.0000000000000659]
  • [4] Prediction of incident atrial fibrillation in post-stroke patients using machine learning: a French nationwide study
    Bisson, Arnaud
    Lemrini, Yassine
    El-Bouri, Wahbi
    Bodin, Alexandre
    Angoulvant, Denis
    Lip, Gregory Y. H.
    Fauchier, Laurent
    [J]. CLINICAL RESEARCH IN CARDIOLOGY, 2023, 112 (06) : 815 - 823
  • [5] Prediction of Incident Atrial Fibrillation According to Gender in Patients With Ischemic Stroke From a Nationwide Cohort
    Bisson, Arnaud
    Bodin, Alexandre
    Clementy, Nicolas
    Babuty, Dominique
    Lip, Gregory Y. H.
    Fauchier, Laurent
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2018, 121 (04) : 437 - 444
  • [6] Predicting Adverse Events beyond Stroke and Bleeding with the ABC-Stroke and ABC-Bleeding Scores in Patients with Atrial Fibrillation: The Murcia AF Project
    Camelo-Castillo, Anny
    Miguel Rivera-Caravaca, Jose
    Marin, Francisco
    Vicente, Vicente
    Lip, Gregory Y. H.
    Roldan, Vanessa
    [J]. THROMBOSIS AND HAEMOSTASIS, 2020, 120 (08) : 1200 - 1207
  • [7] Frailty and Multimorbidity: Different Ways of Thinking About Geriatrics
    Cesari, Matteo
    Ulises Perez-Zepeda, Mario
    Marzetti, Emanuele
    [J]. JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2017, 18 (04) : 361 - 364
  • [8] Multimorbidity and the risk of hospitalization and death in atrial fibrillation: A population-based study
    Chamberlain, Alanna M.
    Alonso, Alvaro
    Gersh, Bernard J.
    Manemann, Sheila M.
    Killian, Jill M.
    Weston, Susan A.
    Byrne, Margaret
    Roger, Veronique L.
    [J]. AMERICAN HEART JOURNAL, 2017, 185 : 74 - 84
  • [9] 2021 Focused Update Consensus Guidelines of the Asia Pacific Heart Rhythm Society on Stroke Prevention in Atrial Fibrillation: Executive Summary *
    Chao, Tze-Fan
    Joung, Boyoung
    Takahashi, Yoshihide
    Lim, Toon Wei
    Choi, Eue-Keun
    Chan, Yi-Hsin
    Guo, Yutao
    Sriratanasathavorn, Charn
    Oh, Seil
    Okumura, Ken
    Lip, Gregory Y. H.
    [J]. THROMBOSIS AND HAEMOSTASIS, 2022, 122 (01) : 20 - 47
  • [10] A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION
    CHARLSON, ME
    POMPEI, P
    ALES, KL
    MACKENZIE, CR
    [J]. JOURNAL OF CHRONIC DISEASES, 1987, 40 (05): : 373 - 383