Interlacing Polynomial Method for the Column Subset Selection Problem

被引:1
作者
Cai, Jian-Feng [1 ]
Xu, Zhiqiang [2 ,3 ]
Xu, Zili [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Inst Comp Math, Acad Math & Syst Sci, LSEC, Beijing 100091, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
KADISON-SINGER PROBLEM; RESTRICTED INVERTIBILITY; ALGORITHMS; EXTENSIONS;
D O I
10.1093/imrn/rnae001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the spectral norm version of the column subset selection problem. Given a matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ and a positive integer $k\leq \textrm{rank}(\textbf{A})$, the objective is to select exactly $k$ columns of $\textbf{A}$ that minimize the spectral norm of the residual matrix after projecting $\textbf{A}$ onto the space spanned by the selected columns. We use the method of interlacing polynomials introduced by Marcus-Spielman-Srivastava to derive a new upper bound on the minimal approximation error. This new bound is asymptotically sharp when the matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ obeys a spectral power-law decay. The relevant expected characteristic polynomial is a variation of the expected polynomial for the restricted invertibility problem, incorporating two extra variable substitution operators. Finally, we propose a deterministic polynomial-time algorithm that achieves this error bound up to a computational error.
引用
收藏
页码:7798 / 7819
页数:22
相关论文
共 50 条
[31]   Acceleration of Feature Subset Selection using CUDA [J].
Yang, Jun ;
Jing, Si-Yuan .
2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, :140-144
[32]   Integer factorization as subset-sum problem [J].
Hittmeir, Markus .
JOURNAL OF NUMBER THEORY, 2023, 249 :93-118
[33]   The Subset Assignment Problem for Data Placement in Caches [J].
Ghandeharizadeh, Shahram ;
Irani, Sandy ;
Lam, Jenny .
ALGORITHMICA, 2018, 80 (07) :2201-2220
[34]   Using the Multiple Subset Problem for encryption and communication [J].
Zadok, Yair ;
Voloch, Nadav ;
Bloch, Noa Voloch ;
Hajaj, Maor Meir .
2024 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS, BIOMEDICAL ENGINEERING AND ELECTRONIC SYSTEMS, COMCAS 2024, 2024,
[35]   Generalization of the Subset Sum Problem and Cubic Forms [J].
Seliverstov, A. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (01) :48-56
[36]   Machine-Learning-Based Column Selection for Column Generation [J].
Morabit, Mouad ;
Desaulniers, Guy ;
Lodi, Andrea .
TRANSPORTATION SCIENCE, 2021, 55 (04) :815-831
[37]   Feature Subset Selection based on Redundancy Maximized Clusters [J].
Tarek, Md Hasan ;
Kadir, Md Eusha ;
Sharmin, Sadia ;
Sajib, Abu Ashfaqur ;
Ali, Amin Ahsan ;
Shoyaib, Mohammad .
20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, :521-526
[38]   Feature subset selection using separability index matrix [J].
Han, Jeong-Su ;
Lee, Sang Wan ;
Bien, Zeungnam .
INFORMATION SCIENCES, 2013, 223 :102-118
[39]   The Horseshoe-Like Regularization for Feature Subset Selection [J].
Bhadra, Anindya ;
Datta, Jyotishka ;
Polson, Nicholas G. ;
Willard, Brandon T. .
SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2021, 83 (01) :185-214
[40]   Dynamic Subset Selection for Multi-Camera Tracking [J].
Spurlock, Scott ;
Souvenir, Richard .
PROCEEDINGS OF THE 50TH ANNUAL ASSOCIATION FOR COMPUTING MACHINERY SOUTHEAST CONFERENCE, 2012,