Interlacing Polynomial Method for the Column Subset Selection Problem

被引:0
作者
Cai, Jian-Feng [1 ]
Xu, Zhiqiang [2 ,3 ]
Xu, Zili [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Inst Comp Math, Acad Math & Syst Sci, LSEC, Beijing 100091, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
KADISON-SINGER PROBLEM; RESTRICTED INVERTIBILITY; ALGORITHMS; EXTENSIONS;
D O I
10.1093/imrn/rnae001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the spectral norm version of the column subset selection problem. Given a matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ and a positive integer $k\leq \textrm{rank}(\textbf{A})$, the objective is to select exactly $k$ columns of $\textbf{A}$ that minimize the spectral norm of the residual matrix after projecting $\textbf{A}$ onto the space spanned by the selected columns. We use the method of interlacing polynomials introduced by Marcus-Spielman-Srivastava to derive a new upper bound on the minimal approximation error. This new bound is asymptotically sharp when the matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ obeys a spectral power-law decay. The relevant expected characteristic polynomial is a variation of the expected polynomial for the restricted invertibility problem, incorporating two extra variable substitution operators. Finally, we propose a deterministic polynomial-time algorithm that achieves this error bound up to a computational error.
引用
收藏
页码:7798 / 7819
页数:22
相关论文
共 50 条
[21]   Group subset selection for linear regression [J].
Guo, Yi ;
Berman, Mark ;
Gao, Junbin .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 75 :39-52
[22]   Subset selection for matrices with fixed blocks [J].
Xie, Jiaxin ;
Xu, Zhiqiang .
ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (01) :1-26
[23]   Multi-model subset selection [J].
Christidis, Anthony-Alexander ;
Van Aelst, Stefan ;
Zamar, Ruben .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 203
[24]   Subset Selection for Evolutionary Multiobjective Optimization [J].
Gu, Yu-Ran ;
Bian, Chao ;
Li, Miqing ;
Qian, Chao .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (02) :403-417
[25]   Implicitly Restarted Refined Generalised Arnoldi Method with Deflation for the Polynomial Eigenvalue Problem [J].
Wei, Wei ;
Dai, Hua .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) :82-99
[26]   Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem [J].
Marcus, Adam W. ;
Spielman, Daniel A. ;
Srivastava, Nikhil .
ANNALS OF MATHEMATICS, 2015, 182 (01) :327-350
[27]   Subset Selection Using Frequency Decomposition with Applications [J].
Tang, W. M. ;
Yiu, K. F. C. ;
Wong, H. .
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2020, 19 (01) :195-220
[28]   Greedy Binary Search and Feature Subset Selection [J].
Han, Myung-Mook ;
Li, Dong-hui .
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2009, 12 (06) :1379-1395
[29]   Supervised feature subset selection with ordinal optimization [J].
Feng, Dingcheng ;
Chen, Feng ;
Xu, Wenli .
KNOWLEDGE-BASED SYSTEMS, 2014, 56 :123-140
[30]   Acceleration of Feature Subset Selection using CUDA [J].
Yang, Jun ;
Jing, Si-Yuan .
2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, :140-144