Interlacing Polynomial Method for the Column Subset Selection Problem

被引:0
作者
Cai, Jian-Feng [1 ]
Xu, Zhiqiang [2 ,3 ]
Xu, Zili [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Inst Comp Math, Acad Math & Syst Sci, LSEC, Beijing 100091, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
KADISON-SINGER PROBLEM; RESTRICTED INVERTIBILITY; ALGORITHMS; EXTENSIONS;
D O I
10.1093/imrn/rnae001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the spectral norm version of the column subset selection problem. Given a matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ and a positive integer $k\leq \textrm{rank}(\textbf{A})$, the objective is to select exactly $k$ columns of $\textbf{A}$ that minimize the spectral norm of the residual matrix after projecting $\textbf{A}$ onto the space spanned by the selected columns. We use the method of interlacing polynomials introduced by Marcus-Spielman-Srivastava to derive a new upper bound on the minimal approximation error. This new bound is asymptotically sharp when the matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ obeys a spectral power-law decay. The relevant expected characteristic polynomial is a variation of the expected polynomial for the restricted invertibility problem, incorporating two extra variable substitution operators. Finally, we propose a deterministic polynomial-time algorithm that achieves this error bound up to a computational error.
引用
收藏
页码:7798 / 7819
页数:22
相关论文
共 50 条
  • [1] On a new method for controlling the entire spectrum in the problem of column subset selection
    Chretien, Stephan
    Darses, Sebastien
    EXPOSITIONES MATHEMATICAE, 2019, 37 (03) : 314 - 321
  • [2] Regularized greedy column subset selection
    Ordozgoiti, Bruno
    Mozo, Alberto
    Garcia Lopez de Lacalle, Jesus
    INFORMATION SCIENCES, 2019, 486 : 393 - 418
  • [3] A determinantal point process for column subset selection
    Belhadji, Ayoub
    Bardenet, Remi
    Chainais, Pierre
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [4] Column subset selection via sparse approximation of SVD
    Civril, A.
    Magdon-Ismail, M.
    THEORETICAL COMPUTER SCIENCE, 2012, 421 : 1 - 14
  • [5] Efficient volume sampling for row/column subset selection
    Deshpande, Amit
    Rademacher, Luis
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 329 - 338
  • [6] Column Subset Selection, Matrix Factorization, and Eigenvalue Optimization
    Tropp, Joel A.
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 978 - 986
  • [7] Optimal Column Subset Selection by A-Star Search
    Arai, Hiromasa
    Maung, Crystal
    Schweitzer, Haim
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1079 - 1085
  • [8] SELECTION OF A LARGE SUM-FREE SUBSET IN POLYNOMIAL-TIME
    KOLOUNTZAKIS, MN
    INFORMATION PROCESSING LETTERS, 1994, 49 (05) : 255 - 256
  • [9] Evaluating column subset selection methods for endmember extraction in hyperspectral unmixing
    Aldeghlawi, Maher
    Alkhatib, Mohammed Q.
    Velez-Reyes, Miguel
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [10] An Explicit Sampling Dependent Spectral Error Bound for Column Subset Selection
    Yang, Tianbao
    Zhang, Lijun
    Jin, Rong
    Zhu, Shenghuo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 135 - 143