Interlacing Polynomial Method for the Column Subset Selection Problem

被引:1
作者
Cai, Jian-Feng [1 ]
Xu, Zhiqiang [2 ,3 ]
Xu, Zili [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Inst Comp Math, Acad Math & Syst Sci, LSEC, Beijing 100091, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
KADISON-SINGER PROBLEM; RESTRICTED INVERTIBILITY; ALGORITHMS; EXTENSIONS;
D O I
10.1093/imrn/rnae001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the spectral norm version of the column subset selection problem. Given a matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ and a positive integer $k\leq \textrm{rank}(\textbf{A})$, the objective is to select exactly $k$ columns of $\textbf{A}$ that minimize the spectral norm of the residual matrix after projecting $\textbf{A}$ onto the space spanned by the selected columns. We use the method of interlacing polynomials introduced by Marcus-Spielman-Srivastava to derive a new upper bound on the minimal approximation error. This new bound is asymptotically sharp when the matrix $\textbf{A}\in \mathbb{R}<^>{n\times d}$ obeys a spectral power-law decay. The relevant expected characteristic polynomial is a variation of the expected polynomial for the restricted invertibility problem, incorporating two extra variable substitution operators. Finally, we propose a deterministic polynomial-time algorithm that achieves this error bound up to a computational error.
引用
收藏
页码:7798 / 7819
页数:22
相关论文
共 47 条
[1]  
Anderson DG, 2015, JMLR WORKSH CONF PRO, V38, P19
[2]   EXTREME POINTS IN SETS OF POSITIVE LINEAR MAPS ON B(H) [J].
ANDERSON, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 31 (02) :195-217
[3]   EXTENSIONS, RESTRICTIONS, AND REPRESENTATIONS OF STATES ON C-STAR-ALGEBRAS [J].
ANDERSON, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 249 (02) :303-329
[4]  
Anderson Joel., 1981, Topics in modern operator theory (Timisoara/Herculane, 1980), V2, P27
[5]   High-Dimensional Matched Subspace Detection When Data are Missing [J].
Balzano, Laura ;
Recht, Benjamin ;
Nowak, Robert .
2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, :1638-1642
[6]   TWICE-RAMANUJAN SPARSIFIERS [J].
Batson, Joshua ;
Spielman, Daniel A. ;
Srivastava, Nikhil .
SIAM JOURNAL ON COMPUTING, 2012, 41 (06) :1704-1721
[7]  
Belhadji A, 2020, J MACH LEARN RES, V21
[8]  
BOURGAIN J., 1989, Analysis at Urbana, Vol. II (Urbana, IL, 1986-1987), V138, P61
[9]   NEAR-OPTIMAL COLUMN-BASED MATRIX RECONSTRUCTION [J].
Boutsidis, Christos ;
Drineas, Petros ;
Magdon-Ismail, Malik .
SIAM JOURNAL ON COMPUTING, 2014, 43 (02) :687-717
[10]  
Boutsidis C, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P968