Variational Data Assimilation for the Sea Thermodynamics Model and Sensitivity of Marine Characteristics to Observation Errors

被引:0
作者
Shutyaev, V. P. [1 ]
Parmuzin, E. I. [1 ]
机构
[1] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
variational data assimilation; optimal control; adjoint equation; covariance matrix; sensitivity; sea thermodynamics model; BLACK-SEA; OCEAN CIRCULATION; TEMPERATURE; COVARIANCES; FUNCTIONALS; ALGORITHM; EQUATIONS;
D O I
10.1134/S0001433823060099
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The methodology of variational assimilation of observational data for the reconstruction of the initial state and heat fluxes for the mathematical model of sea thermodynamics is presented. An algorithm is developed for estimating the sensitivity of a model solution to errors in observational data. The calculation of the gradient of the response function of the model solution is based on the use of the Hessian of the cost functional. The results of numerical experiments for the Black Sea dynamics model developed at the Institute of Numerical Mathematics, Russian Academy of Sciences, are presented.
引用
收藏
页码:722 / 730
页数:9
相关论文
共 50 条
[41]   Methods of variational data assimilation with application to problems of hydrothermodynamics of marine water areas [J].
Agoshkov, Valery I. ;
Lezina, Natalia R. ;
Parmuzin, Eugene I. ;
Sheloput, Tatiana O. ;
Shutyaev, Victor P. ;
Zakharova, Natalia B. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2020, 35 (04) :189-202
[42]   Storm surge model based on variational data assimilation method [J].
Huang, Shi-Li ;
Xu, Jian ;
Wang, De-Guan ;
Lu, Dong-Yan .
WATER SCIENCE AND ENGINEERING, 2010, 3 (02) :166-173
[43]   Storm surge model based on variational data assimilation method [J].
Shili HUANG Jian XU Deguan WANG Dongyan LU College of Water Conservancy and Hydropower Engineering Hohai University Nanjing P R China Shanghai Water Authority Shanghai P R China Shanghai Water Planning and Design Research Institute Shanghai P R China College of Environmental Science and Engineering Hohai University Nanjing P R China .
WaterScienceandEngineering, 2010, 3 (02) :166-173
[44]   Variational data assimilation to improve subsurface drainage model parameters [J].
Chelil, Samy ;
Oubanas, Hind ;
Henine, Hocine ;
Gejadze, Igor ;
Malaterre, Pierre Olivier ;
Tournebize, Julien .
JOURNAL OF HYDROLOGY, 2022, 610
[45]   4D Technology of Variational Data Assimilation for Sea Dynamics Problems [J].
Shutyaev V.P. ;
Agoshkov V.I. ;
Zalesny V.B. ;
Parmuzin E.I. ;
Zakharova N.B. .
Supercomputing Frontiers and Innovations, 2022, 9 (01) :4-16
[46]   The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems Part III - Observation impact and observation sensitivity in the California Current System [J].
Moore, Andrew M. ;
Arango, Hernan G. ;
Broquet, Gregoire ;
Edwards, Chris ;
Veneziani, Milena ;
Powell, Brian ;
Foley, Dave ;
Doyle, James D. ;
Costa, Dan ;
Robinson, Patrick .
PROGRESS IN OCEANOGRAPHY, 2011, 91 (01) :74-94
[47]   Method for Setting Conditions at Open Lateral Boundaries in the Baltic Sea Hydrothermodynamic Model Based on Variational Assimilation of Salinity Data [J].
Sheloput, T. O. ;
Gusev, A., V .
RUSSIAN METEOROLOGY AND HYDROLOGY, 2022, 47 (02) :89-97
[48]   Method for Setting Conditions at Open Lateral Boundaries in the Baltic Sea Hydrothermodynamic Model Based on Variational Assimilation of Salinity Data [J].
T. O. Sheloput ;
A. V. Gusev .
Russian Meteorology and Hydrology, 2022, 47 :89-97
[49]   On numerical computation of sensitivity of response functions to system inputs in variational data assimilation problems [J].
Shutyaev, Victor ;
Tran Thu Ha ;
Le Dimet, Francois-Xavier ;
Hong Son Hoang ;
Nguyen Hong Phong .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2022, 37 (01) :41-61
[50]   Anisotropic diffusion filters for flow-dependent variational data assimilation of sea surface [J].
Hu, Yan ;
Zhang, Xuefeng ;
Li, Dong ;
Li, Wei ;
Zhang, Lianxin ;
Fu, Hongli ;
Zhang, Liang .
OCEAN MODELLING, 2023, 184