Multi-omics integration strategy in the post-mortem interval of forensic science

被引:13
作者
Li, Jian [1 ,2 ]
Wu, Yan-juan [1 ,2 ]
Liu, Ming-feng [1 ,2 ]
Li, Na [1 ,2 ]
Dang, Li-hong [1 ,2 ]
An, Guo-shuai [1 ,2 ]
Lu, Xiao-jun [3 ]
Wang, Liang-liang [1 ,2 ]
Du, Qiu-xiang [1 ,2 ]
Cao, Jie [1 ,2 ]
Sun, Jun-hong [1 ,2 ]
机构
[1] Shanxi Med Univ, Sch Forens Med, 98 Univ St, Jinzhong 030604, Shanxi, Peoples R China
[2] Shanxi Key Lab Forens Med, Jinzhong 030600, Shanxi, Peoples R China
[3] Baotou City Publ Secur Bur, Criminal Invest Detachment, 191 Jianshe Rd, Baotou 014030, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Multi-omics; Post-mortem interval; Stacking algorithm; TIME; DEATH;
D O I
10.1016/j.talanta.2023.125249
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Estimates of post-mortem interval (PMI), which often serve as pivotal evidence in forensic contexts, are fundamentally based on assessments of variability among diverse molecular markers (including proteins and metabolites), their correlations, and their temporal changes in post-mortem organisms. Nevertheless, the present approach to estimating the PMI is not comprehensive and exhibits poor performance. We developed an innovative approach that integrates multi-omics and artificial intelligence, using multimolecular, multimarker, and multidimensional information to accurately describe the intricate biological processes that occur after death, ultimately enabling inference of the PMI. Called the multi-omics stacking model (MOSM), it combines metabolomics, protein microarray electrophoresis, and fourier transform-infrared spectroscopy data. It shows improved prediction accuracy of the PMI, which is urgently needed in the forensic field. It achieved an accuracy of 0.93, generalized area under the receiver operating characteristic curve of 0.98, and minimum mean absolute error of 0.07. The MOSM integration framework not only considers multiple markers but also incorporates machine-learning models with distinct algorithmic principles. The diversity of biological mechanisms and algorithmic models further ensures the generalizability and robustness of PMI estimation.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Analytical Strategy for MS-Based Thanatochemistry to Estimate Postmortem Interval [J].
Aiello, Donatella ;
Luca, Federica ;
Siciliano, Carlo ;
Frati, Paola ;
Fineschi, Vittorio ;
Rongo, Rocco ;
Napoli, Anna .
JOURNAL OF PROTEOME RESEARCH, 2021, 20 (05) :2607-2617
[2]   The application of protein microarray assays in psychoneuroimmunology [J].
Ayling, K. ;
Bowden, T. ;
Tighe, P. ;
Todd, I. ;
Dilnot, E. M. ;
Negm, O. H. ;
Fairclough, L. ;
Vedhara, K. .
BRAIN BEHAVIOR AND IMMUNITY, 2017, 59 :62-66
[3]   Serpentine: a flexible 2D binning method for differential Hi-C analysis [J].
Baudry, Lyam ;
Millot, Gael A. ;
Thierry, Agnes ;
Koszul, Romain ;
Scolari, Vittore F. .
BIOINFORMATICS, 2020, 36 (12) :3645-3651
[4]   The 'ForensOMICS' approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics [J].
Bonicelli, Andrea ;
Mickleburgh, Hayley L. ;
Chighine, Alberto ;
Locci, Emanuela ;
Wescott, Daniel J. ;
Procopio, Noemi .
ELIFE, 2022, 11
[5]   Forensic identification of sudden cardiac death: a new approach combining metabolomics and machine learning [J].
Cao, Jie ;
Wei, Xue ;
Liu, Ming-Feng ;
An, Guo-Shuai ;
Li, Jian ;
Du, Qiu-Xiang ;
Sun, Jun-Hong .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2023, 415 (12) :2291-2305
[6]   Metabolomics investigation of post-mortem human pericardial fluid [J].
Chighine, Alberto ;
Stocchero, Matteo ;
Ferino, Giulio ;
De-Giorgio, Fabio ;
Conte, Celeste ;
Nioi, Matteo ;
d'Aloja, Ernesto ;
Locci, Emanuela .
INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2023, 137 (06) :1875-1885
[7]   Postmortem proteomics to discover biomarkers for forensic PMI estimation [J].
Choi, Kyoung-Min ;
Zissler, Angela ;
Kim, Eunjung ;
Ehrenfellner, Bianca ;
Cho, Eunji ;
Lee, Se-in ;
Steinbacher, Peter ;
Yun, Ki Na ;
Shin, Jong Hwan ;
Kim, Jin Young ;
Stoiber, Walter ;
Chung, Heesun ;
Monticelli, Fabio Carlo ;
Kim, Jae-Young ;
Pittner, Stefan .
INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2019, 133 (03) :899-908
[8]   Human decomposition and the reliability of a 'Universal' model for post mortem interval estimations [J].
Cockle, Diane L. ;
Bell, Lynne S. .
FORENSIC SCIENCE INTERNATIONAL, 2015, 253 :136.e1-136.e9
[9]   Predicting the Postmortem Interval Based on Gravesoil Microbiome Data and a Random Forest Model [J].
Cui, Chunhong ;
Song, Yang ;
Mao, Dongmei ;
Cao, Yajun ;
Qiu, Bowen ;
Gui, Peng ;
Wang, Hui ;
Zhao, Xingchun ;
Huang, Zhi ;
Sun, Liqiong ;
Zhong, Zengtao .
MICROORGANISMS, 2023, 11 (01)
[10]  
Du Q.X., 2022, Front. Med., V9