Global and cross-modal feature aggregation for multi-omics data classification and on

被引:10
|
作者
Zheng, Xiao [1 ]
Wang, Minhui [2 ]
Huang, Kai [3 ]
Zhu, En [1 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Changsha 410073, Peoples R China
[2] Nanjing Med Univ, Kangda Coll, Lianshui Peoples Hosp, Dept Pharm, Huaian 223300, Peoples R China
[3] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Clin Ctr Human Gene Res, Wuhan 430030, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-omics data classification; Multi-modal learning; Cross-modal fusion; Contrastive learning; NETWORK; FUSION; GRAPH; MULTIMODALITY; PREDICTION; BIOLOGY;
D O I
10.1016/j.inffus.2023.102077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With rapid development of single-cell multi-modal sequencing technologies, more and more multi-omics data come into being and provide a unique opportunity for the identification of distinct cell types at the single-cell level. Therefore, it is important to integrate different modalities which are with high-dimensional features for boosting final multi-omics data classification performance. However, existing multi-omics data classification methods mainly focus on exploiting the complementary information of different modalities, while ignoring the learning confidence and cross-modal sample relationship during information fusion. In this paper, we propose a multi-omics data classification network via global and cross-modal feature aggregation, referred to as GCFANet. On one hand, considering that a large number of feature dimensions in different modalities could not contribute to final classification performance but disturb the discriminability of different samples, we propose a feature confidence learning mechanism to suppress some redundant features, as well as enhancing the expression of discriminative feature dimensions in each modality. On the other hand, in order to capture the inherent sample structure information implied in each modality, we design a graph convolutional network branch to learn the corresponding structure preserved feature representation. Then the modal-specific feature representations are concatenated and input to a transformer induced global and cross-modal feature aggregation module for learning consensus feature representation from different modalities. In addition, the consensus feature representation used for final classification is enhanced via a view-specific consistency preserved contrastive learning strategy. Extensive experiments on four multi-omics datasets are conducted to demonstrate the efficacy of the proposed GCFANet.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A cross-modal feature aggregation and enhancement network for hyperspectral and LiDAR joint classification
    Zhang, Yiyan
    Gao, Hongmin
    Zhou, Jun
    Zhang, Chenkai
    Ghamisi, Pedram
    Xu, Shufang
    Li, Chenming
    Zhang, Bing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [2] Dynamic Cross-Modal Feature Interaction Network for Hyperspectral and LiDAR Data Classification
    Lin, Junyan
    Gao, Feng
    Qi, Lin
    Dong, Junyu
    Du, Qian
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [3] Supervised cross-modal factor analysis for multiple modal data classification
    Wang, Jingbin
    Zhou, Yihua
    Duan, Kanghong
    Wang, Jim Jing-Yan
    Bensmail, Halima
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1882 - 1888
  • [4] A deep contrastive multi-modal encoder for multi-omics data integration and analysis
    Yinghua, Ma
    Khan, Ahmad
    Heng, Yang
    Khan, Fiaz Gul
    Ali, Farman
    Al-Otaibi, Yasser D.
    Bashir, Ali Kashif
    INFORMATION SCIENCES, 2025, 700
  • [5] Dual alignment feature embedding network for multi-omics data clustering
    Xiao, Yuang
    Yang, Dong
    Li, Jiaxin
    Zou, Xin
    Zhou, Hua
    Tang, Chang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [6] CGFTrans: Cross-Modal Global Feature Fusion Transformer for Medical Report Generation
    Xu, Liming
    Tang, Quan
    Zheng, Bochuan
    Lv, Jiancheng
    Li, Weisheng
    Zeng, Xianhua
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (09) : 5600 - 5612
  • [7] Cross-modal dynamic convolution for multi-modal emotion recognition
    Wen, Huanglu
    You, Shaodi
    Fu, Ying
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 78
  • [8] Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching
    Zhang, Jinli
    Ren, Hongwei
    Jiang, Zongli
    Chen, Zheng
    Yang, Ziwei
    Matsubara, Yasuko
    Sakurai, Yasushi
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2024, 23 (04) : 579 - 590
  • [9] Cascaded cross-modal transformer for audio-textual classification
    Ristea, Nicolae-Catalin
    Anghel, Andrei
    Ionescu, Radu Tudor
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [10] Cross-modal fusion for multi-label image classification with attention mechanism
    Wang, Yangtao
    Xie, Yanzhao
    Zeng, Jiangfeng
    Wang, Hanpin
    Fan, Lisheng
    Song, Yufan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101