On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers

被引:0
作者
Rihane, Salah Eddine [1 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
关键词
k-Fibonacci numbers; Balancing numbers; Lucas-Balancing numbers; Linear form in logarithms; Reduction method; DIOPHANTINE EQUATIONS;
D O I
10.1007/s13226-023-00485-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Balancing number n and the balancer r are solution of the Diophantine equation 1 + 2 + . . . + (n - 1) = (n + 1) + (n + 2) + . . . + (n + r). It is well known that if n is balancing number, then 8n(2) + 1 is a perfect square and its positive square root is called a Lucas-Balancing number. Let k = 2. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequences. For these sequence the first k terms are 0, ... , 0, 1 and each term afterwards is the sum of the preceding k terms. In this manuscript, our main objective is to find all k-Fibonacci numbers which are the product of two Balancing or Lucas-Balancing numbers.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 18 条
  • [1] Behera A, 1999, FIBONACCI QUART, V37, P98
  • [2] A DIOPHANTINE EQUATION IN k-FIBONACCI NUMBERS AND REPDIGITS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    [J]. COLLOQUIUM MATHEMATICUM, 2018, 152 (02) : 299 - 315
  • [3] POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    [J]. MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 85 - 100
  • [4] BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
  • [5] Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers
    Bugeaud, Yann
    Mignotte, Maurice
    Siksek, Samir
    [J]. ANNALS OF MATHEMATICS, 2006, 163 (03) : 969 - 1018
  • [6] de Weger B. M. M., 1989, CWI TRACT, V65
  • [7] Diophantine equations concerning balancing and Lucas balancing numbers
    Dey, Pallab Kanti
    Rout, Sudhansu Sekhar
    [J]. ARCHIV DER MATHEMATIK, 2017, 108 (01) : 29 - 43
  • [8] Dresden GPB, 2014, J INTEGER SEQ, V17
  • [9] Fibonacci numbers which are products of two balancing numbers
    Erduvan, Fatih
    Keskin, Refik
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2019, 50 : 57 - 70
  • [10] HOUSE PROBLEM
    FINKELSTEIN, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10) : 1082 - +