Bright Source of Purcell-Enhanced, Triggered, Single Photons in the Telecom C-Band

被引:28
作者
Nawrath, Cornelius [1 ,2 ]
Joos, Raphael [1 ,2 ]
Kolatschek, Sascha [1 ,2 ]
Bauer, Stephanie [1 ,2 ]
Pruy, Pascal [1 ,2 ]
Hornung, Florian [1 ,2 ]
Fischer, Julius [1 ,2 ,3 ,4 ]
Huang, Jiasheng [1 ,2 ]
Vijayan, Ponraj [1 ,2 ]
Sittig, Robert [1 ,2 ]
Jetter, Michael [1 ,2 ]
Portalupi, Simone Luca [1 ,2 ]
Michler, Peter [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Halbleiteropt & Funkt Grenzflachen IHFG, Ctr Integrated Quantum Sci & Technol IQST, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, SCoPE, D-70569 Stuttgart, Germany
[3] Delft Univ Technol, QuTech, NL-2628 CJ Delft, Netherlands
[4] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
关键词
circular Bragg cavity; Purcell effect; quantum dot; single photon; telecom C-band; QUANTUM-DOT; PAIRS;
D O I
10.1002/qute.202300111
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several emission features mark semiconductor quantum dots as promising non-classical light sources for prospective quantum implementations. For long-distance transmission and Si-based on-chip processing, the possibility to match the telecom C-band is decisive, while source brightness and high single-photon purity are key features in virtually any quantum implementation. An InAs/InGaAs/GaAs quantum dot emitting in the telecom C-band coupled to a circular Bragg grating is presented here. This cavity structure stands out due to its high broadband collection efficiency and high attainable Purcell factors. Here, simultaneously high brightness with a fiber-coupled single-photon count rate of 13.9 MHz for an excitation repetition rate of 228 MHz (first-lens single-photon collection efficiency approximate to 17% for NA = 0.6), while maintaining a low multi-photon contribution of g((2))(0) = 0.0052 is demonstrated. Moreover, the compatibility with temperatures of up to 40 K attainable with compact cryo coolers, further underlines the suitability for out-of-the-lab implementations.
引用
收藏
页数:6
相关论文
共 45 条
  • [1] Gigahertz-Clocked Teleportation of Time-Bin Qubits with a Quantum Dot in the Telecommunication C Band
    Anderson, M.
    Mueller, T.
    Skiba-Szymanska, J.
    Krysa, A. B.
    Huwer, J.
    Stevenson, R. M.
    Heffernan, J.
    Ritchie, D. A.
    Shields, A. J.
    [J]. PHYSICAL REVIEW APPLIED, 2020, 13 (05)
  • [2] High-Performance Single-Photon Sources at Telecom Wavelength Based on Broadband Hybrid Circular Bragg Gratings
    Barbiero, Andrea
    Huwer, Jan
    Skiba-Szymanska, Joanna
    Ellis, David J. P.
    Stevenson, R. Mark
    Mueller, Tina
    Shooter, Ginny
    Goff, Lucy E.
    Ritchie, David A.
    Shields, Andrew J.
    [J]. ACS PHOTONICS, 2022, 9 (09) : 3060 - 3066
  • [3] Design study for an efficient semiconductor quantum light source operating in the telecom C-band based on an electrically-driven circular Bragg grating
    Barbiero, Andrea
    Huwer, Jan
    Skiba-Szymanska, Joanna
    Muller, Tina
    Stevenson, R. Mark
    Shields, Andrew J.
    [J]. OPTICS EXPRESS, 2022, 30 (07) : 10919 - 10928
  • [4] Entanglement Swapping with Photons Generated on Demand by a Quantum Dot
    Basset, F. Basso
    Rota, M. B.
    Schimpf, C.
    Tedeschi, D.
    Zeuner, K. D.
    da Silva, S. F. Covre
    Reindl, M.
    Zwiller, V
    Jons, K. D.
    Rastelli, A.
    Trotta, R.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (16)
  • [5] Achieving stable fiber coupling of quantum dot telecom C-band single-photons to an SOI photonic device
    Bauer, Stephanie
    Wang, Dongze
    Hoppe, Niklas
    Nawrath, Cornelius
    Fischer, Julius
    Witz, Norbert
    Kaschel, Mathias
    Schweikert, Christian
    Jetter, Michael
    Portalupi, Simone L.
    Berroth, Manfred
    Michler, Peter
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (21)
  • [6] Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling
    Birowosuto, Muhammad Danang
    Sumikura, Hisashi
    Matsuo, Shinji
    Taniyama, Hideaki
    van Veldhoven, Peter J.
    Noetzel, Richard
    Notomi, Masaya
    [J]. SCIENTIFIC REPORTS, 2012, 2
  • [7] Enhancing quantum cryptography with quantum dot single-photon sources
    Bozzio, Mathieu
    Vyvlecka, Michal
    Cosacchi, Michael
    Nawrath, Cornelius
    Seidelmann, Tim
    Loredo, Juan C.
    Portalupi, Simone L.
    Axt, Vollrath M.
    Michler, Peter
    Walther, Philip
    [J]. NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [8] Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots
    Bremer, Lucas
    Jimenez, Carlos
    Thiele, Simon
    Weber, Ksenia
    Huber, Tobias
    Rodt, Sven
    Herkommer, Alois
    Burger, Sven
    Hoefling, Sven
    Giessen, Harald
    Reitzenstein, Stephan
    [J]. OPTICS EXPRESS, 2022, 30 (10) : 15913 - 15928
  • [9] Telecom wavelength single photon sources
    Cao, Xin
    Zopf, Michael
    Ding, Fei
    [J]. JOURNAL OF SEMICONDUCTORS, 2019, 40 (07)
  • [10] Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K
    Carmesin, C.
    Olbrich, F.
    Mehrtens, T.
    Florian, M.
    Michael, S.
    Schreier, S.
    Nawrath, C.
    Paul, M.
    Hoeschele, J.
    Gerken, B.
    Kettler, J.
    Portalupi, S. L.
    Jetter, M.
    Michler, P.
    Rosenauer, A.
    Jahnke, F.
    [J]. PHYSICAL REVIEW B, 2018, 98 (12)